题目 【传送门】
· 已知一个含n个元素的序列,m个限制,l,r,x 表示 a[l] or a[l+1] or ...or a[r-1] or a[r] 求一种合法序列每个子集的异或和的和,保证至少存在一种合法序列,保证序列中每个数至少被一个限制覆盖,若有多个合法序列,则输出任意一种的答案即可,有多组数据。
分析
显然首先我们每一位能取 1 就取 1 是一定满足条件的。因此就变成了初始全部数是 容易想到拆位用区间加维护。
由于题目给的条件一定能成立,那么只要有某个 x 在某一二进制位上为 1,那么必然有某个a[i] 在此位上也为 1。
由于题目保证每个 a[i] 至少被一个限制条件所覆盖,所以只要某一个二进制位所有 a[i] 值均为 0,那么所有 x 在此位上也均为 0。
由于题目保证序列中每个数至少被一个限制覆盖,所以所有a[i]的or只就为所有x的or值
对于这组样例 先将所有格子赋为1
① | ② | ③ | ④ | |
第一位 | 1 | 1 | 0 | 0 |
第二位 | 1 | 1 | 0 | 1 |
第三位 | 1 | 1 | 0 | 0 |
5 4 1 2 7 3 3 7 4 4 0 4 5 2
题目需求合法序列每个子集的异或和的和,所有我们可以同过逐位处理 由异或性质可知该位上只要有奇数个1 和任意个数的0,异或出的结果就为1
所以,第一位对答案的贡献 为 ans1=
第二位对答案的贡献 为 ans2=
第三位对答案的贡献 为ans3=
然后就会发现ans==
。
Code
#include<bits/stdc++.h>
#define ll long long
#define Mod 1000000007
using namespace std;
ll T,n,m,l,r,x,a;
ll ksm(ll y)
{
ll s=2,ans=1;
while(y>0)
{
if(y&1) ans=(ans*s)%Mod;
y>>=1; s=(s*s)%Mod;
}
return ans;
}//快速幂 求2^(n-1)
int main()
{
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld",&n,&m); a=0;
for(int i=1;i<=m;i++) scanf("%lld%lld%lld",&l,&r,&x),a|=x;
cout<<(a*ksm(n-1))%Mod<<"\n";
}
return 0;
}