93.复原IP地址
给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效的 IP 地址。
示例 1:
- 输入:s = "25525511135"
- 输出:["255.255.11.135","255.255.111.35"]
示例 2:
- 输入:s = "0000"
- 输出:["0.0.0.0"]
示例 3:
- 输入:s = "1111"
- 输出:["1.1.1.1"]
示例 4:
- 输入:s = "010010"
- 输出:["0.10.0.10","0.100.1.0"]
示例 5:
- 输入:s = "101023"
- 输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
提示:
- 0 <= s.length <= 3000
- s 仅由数字组成
回溯(版本一)
class Solution:
def restoreIpAddresses(self, s: str) -> List[str]:
result = []
self.backtracking(s, 0, 0, "", result)
return result
def backtracking(self, s, start_index, point_num, current, result):
if point_num == 3: # 逗点数量为3时,分隔结束
if self.is_valid(s, start_index, len(s) - 1): # 判断第四段子字符串是否合法
current += s[start_index:] # 添加最后一段子字符串
result.append(current)
return
for i in range(start_index, len(s)):
if self.is_valid(s, start_index, i): # 判断 [start_index, i] 这个区间的子串是否合法
sub = s[start_index:i + 1]
self.backtracking(s, i + 1, point_num + 1, current + sub + '.', result)
else:
break
def is_valid(self, s, start, end):
if start > end:
return False
if s[start] == '0' and start != end: # 0开头的数字不合法
return False
num = 0
for i in range(start, end + 1):
if not s[i].isdigit(): # 遇到非数字字符不合法
return False
num = num * 10 + int(s[i])
if num > 255: # 如果大于255了不合法
return False
return True
这段代码是一个解决IP地址恢复问题的Python实现。它的目标是把一个包含3个点分隔的字符串s(比如"1.1.1")恢复成可能的IP地址列表。每个IP地址段都应该是三个0到255之间的数字,并且用点号分隔。每个IP地址可以有三个1到3个3位的数字,但是第一个和最后一个数字不能为0(除非它只有一个0)。
下面是代码的详细解释:
restoreIpAddresses
是主函数,它创建一个空的结果列表,然后调用backtracking
函数来尝试所有可能的IP地址组合。backtracking
是一个递归函数,它从给定的开始索引开始,尝试所有可能的子字符串。如果子字符串是一个有效的IP地址段,它将递归地尝试下一个子字符串,直到所有的IP地址段都被找到。如果找到的IP地址段是有效的,它将被添加到结果列表中。is_valid
是一个辅助函数,它检查一个给定的子字符串是否是一个有效的IP地址段。一个有效的IP地址段必须是三个0到255之间的数字,并且第一个和最后一个数字不能是0(除非只有一个0)。
请注意,这个代码对于非常长的字符串可能会运行得非常慢,因为它会尝试所有可能的子字符串。如果字符串s包含n个字符,那么这个函数将尝试大约2^n个不同的IP地址组合。因此,对于非常大的n,这个函数可能需要很长时间才能运行完毕。
78.子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
class Solution:
def subsets(self, nums):
result = []
path = []
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
result.append(path[:]) # 收集子集,要放在终止添加的上面,否则会漏掉自己
# if startIndex >= len(nums): # 终止条件可以不加
# return
for i in range(startIndex, len(nums)):
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()
这段代码是一个Python实现的回溯算法,用于生成数组的所有子集。代码中定义了一个名为Solution
的类,其中包含两个方法:subsets
和backtracking
。
subsets
方法是入口方法,它创建一个空的结果列表result
和一个空的路径path
,然后调用backtracking
方法进行回溯。
backtracking
方法是一个递归方法,用于生成所有可能的子集。它采用四个参数:nums
是输入的数组,startIndex
是开始索引,path
是当前的子集,result
是结果列表。
在backtracking
方法中,首先将当前的子集path
添加到结果列表result
中(通过复制path
列表实现)。然后,从startIndex
开始遍历数组,将当前元素添加到path
中,并递归调用backtracking
方法,将索引加1,继续生成下一个子集。在递归返回之前,将刚刚添加的元素从path
中弹出,以便尝试其他可能的组合。
这个算法的基本思想是遍历数组中的每个元素,将其添加到当前的子集中,并递归地生成包含该元素的所有子集。通过回溯,可以生成所有可能的子集。
90.子集II
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
- 输入: [1,2,2]
- 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]
class Solution:
def subsetsWithDup(self, nums):
result = []
path = []
used = [False] * len(nums)
nums.sort() # 去重需要排序
self.backtracking(nums, 0, used, path, result)
return result
def backtracking(self, nums, startIndex, used, path, result):
result.append(path[:]) # 收集子集
for i in range(startIndex, len(nums)):
# used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过
# used[i - 1] == False,说明同一树层 nums[i - 1] 使用过
# 而我们要对同一树层使用过的元素进行跳过
if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
continue
path.append(nums[i])
used[i] = True
self.backtracking(nums, i + 1, used, path, result)
used[i] = False
path.pop()
首先,定义了一个类Solution
,在这个类中有两个方法:
subsetsWithDup(self, nums)
: 这是主方法,用于启动子集生成过程。它首先创建了两个空列表result
和path
,然后定义了一个布尔值列表used
,所有元素初始化为False。然后对输入的nums
进行排序,这样我们可以在回溯时跳过重复的元素。最后,它调用backtracking
方法来生成子集。backtracking(self, nums, startIndex, used, path, result)
: 这是一个递归方法,用于生成子集。它首先将当前的path
添加到result
中(通过复制path
列表实现)。然后,从startIndex
开始遍历数组,对于每个元素,如果它与前一个元素相同并且前一个元素没有被使用过,那么就跳过当前元素,以避免生成重复的子集。否则,将当前元素添加到path
中,将该元素标记为已使用,然后递归地生成包含当前元素的子集。在递归返回之前,将刚刚添加的元素从path
中弹出,将该元素标记为未使用,以便尝试其他可能的组合。
这种策略能有效地处理包含重复数字的情况,因为它会跳过那些在树的同一层已经使用过的元素。这就确保了每个子集只包含独特的元素。