每日一题 最大公约数和最小公倍数问题

2023-3-30 每日一题 最大公约数和最小公倍数问题

在这里插入图片描述

1. 题目描述

输入二个正整数x0,y0(2 <= x0 < 100000,2 <= y0 <= 1000000),求出满足下列条件的P,Q的个数。

条件:

  1. P,A是正整数;
  2. 要求P,Q以x0为最大公约数,以y0为最小公倍数。

试求:满足条件的所有可能的两个正整数的个数。

2. 输入格式

每个测试文件只包含一组测试数据,每组两个正整数x0和y0(2 <= x0 < 100000, 2 <= y0 <= 1000000)。

3. 输出格式

对于每组输入数据,输出满足条件的所有可能的两个正整数的个数。

4. 样例

4.1 输入样例

3 60

4.2 输出样例

4

5. 样例刨析

输入 3 60

此时的 P Q 分别为:
3 60
15 12
12 15
60 3

所以,满足条件的所有可能的两个正整数的个数共4种。

6. 题解

6.1 文字描述

因为 P Q 两个数是以 n 作为最大公约数,因此两个数一定都是 n 的倍数。
再因为是以 m 作为最小公倍数,那么两个数一定不会超过 m。
因此利用循环枚举 n ~ m 之间并且是 n 的倍数的数,在判断两个数的最大公约数以及最小公倍数是不是 n 和 m 即可。

6.2 上代码

#include<iostream>
using namespace std;

// 判断最大公约数的自定义函数
int gcd(int a, int b)
{
	return b ? gcd(b, a%b) : a;
}

int main()
{
	int n, m, sum = 0;
	cin >> n >> m;

	// 枚举倍数
	for(int i = 1; i <= m/n; i++)
	{
		for(int j = 1; j <= m/n; j++)
		{
			// 得到两个不大于 m 并且是 n 的倍数的数
			int a = n*i, b = n*j;
			// 用于存储两个数的最大公约数
			int ans = gcd(a, b);
			// 判断最大公约数和最小公倍数是否符合要求
			if(ans == n && b*a/ans == m)
			//	cout << a  << " " << b << endl;
				sum++; 
		} 
	}
	cout << sum;
	return 0;
}

7. 拓展

7.1 关于最大公约数和最小公倍数

最大公约数和最小公倍数的乘积 = 两个数的乘积

7.2 求解最大公约数

辗转相除法

int gcd(int a, int b)
{
	return b ? gcd(b, a%b) : a;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值