2023-3-30 每日一题 最大公约数和最小公倍数问题
文章目录
1. 题目描述
输入二个正整数x0,y0(2 <= x0 < 100000,2 <= y0 <= 1000000),求出满足下列条件的P,Q的个数。
条件:
- P,A是正整数;
- 要求P,Q以x0为最大公约数,以y0为最小公倍数。
试求:满足条件的所有可能的两个正整数的个数。
2. 输入格式
每个测试文件只包含一组测试数据,每组两个正整数x0和y0(2 <= x0 < 100000, 2 <= y0 <= 1000000)。
3. 输出格式
对于每组输入数据,输出满足条件的所有可能的两个正整数的个数。
4. 样例
4.1 输入样例
3 60
4.2 输出样例
4
5. 样例刨析
输入 3 60
此时的 P Q 分别为:
3 60
15 12
12 15
60 3
所以,满足条件的所有可能的两个正整数的个数共4种。
6. 题解
6.1 文字描述
因为 P Q 两个数是以 n 作为最大公约数,因此两个数一定都是 n 的倍数。
再因为是以 m 作为最小公倍数,那么两个数一定不会超过 m。
因此利用循环枚举 n ~ m 之间并且是 n 的倍数的数,在判断两个数的最大公约数以及最小公倍数是不是 n 和 m 即可。
6.2 上代码
#include<iostream>
using namespace std;
// 判断最大公约数的自定义函数
int gcd(int a, int b)
{
return b ? gcd(b, a%b) : a;
}
int main()
{
int n, m, sum = 0;
cin >> n >> m;
// 枚举倍数
for(int i = 1; i <= m/n; i++)
{
for(int j = 1; j <= m/n; j++)
{
// 得到两个不大于 m 并且是 n 的倍数的数
int a = n*i, b = n*j;
// 用于存储两个数的最大公约数
int ans = gcd(a, b);
// 判断最大公约数和最小公倍数是否符合要求
if(ans == n && b*a/ans == m)
// cout << a << " " << b << endl;
sum++;
}
}
cout << sum;
return 0;
}
7. 拓展
7.1 关于最大公约数和最小公倍数
最大公约数和最小公倍数的乘积 = 两个数的乘积
7.2 求解最大公约数
辗转相除法
int gcd(int a, int b)
{
return b ? gcd(b, a%b) : a;
}