UI自动化:利用百度ocr识别解决图形验证码登录问题

        相信大家在做自动化测试过程中都遇到过图形验证码的问题,最近我也是遇到了,网上搜了很多方法,最简单的方法无非就是去掉图形验证码或者设置一个万能验证码,但是这个都需要开发来帮忙解决,对于我们这种自学的人来说就不太行了,后来又看到有一个插件叫ddddocr能行,结果捣鼓半天发现这个插件只支持python10,再高一点的版本就不行了,最后还是要用第三方工具,在AI的帮助下,最后发现百度ocr每个月可以免费使用1000次,这对于个人测试来说应该是够够的了,下面就一起来学习一下吧:

一、注册百度智能云并获取免费资源

1、注册百度智能云

(1)、打开百度智能云网址进行注册:百度智能云-开工采购季 企业上云限时福利

(2)、注册成功后一定要完成实名认证,这样才能获取到免费资源

2、获取免费资源

(1)、注册并实名认证成功后,打开控制台

(2)、打开产品导览----选择文字识别

(3)、在公有云服务下点击应用列表-创建新应用

(4)、在公有云服务下点击应用列表-创建新应用。应用名称和应用描述随便写,接口选择默认文字识别全选即可。

(5)、创建成功之后就可以在应用列表查看已经创建的应用,并生成了专属的API key 和secret key。

二、获取token

(1)、获取后,进入百度AI开放平台获取token。直接打开链接通用参考 - 鉴权认证机制 | 百度AI开放平台,选择新手指南->鉴权认证机制,里面有很多方法可以获取token,这里用的是第一种方法,既复制代码到pycharm里运行:

(2)、运行前需要自己补充一下密钥信息;

(3)、运行后就得到了一个token,选择复制然后粘贴到记事本上,看清楚是复制access_token后面的内容,不要弄错了。token有效期是三十天,过期可以重新生成一下。

三、获取识别结果

(1)、完成以上步骤后,再次打开百度AI开放平台文字识别OCR,找到API文档->通用场景文字识别->通用文字识别(高精度版),直接拉到下面复制代码到pycharm中;

(2)、打开pycharm,把上一步获取到的token在代码中替换,运行后就可以得到ocr识别出来的文字啦。

四、编写自动化测试脚本

1.获取验证码图片

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

# 实例化一个浏览器对象
driver = webdriver.Chrome() 

# 打开测试网页
driver.get("测试网址") 

# 获取验证码元素,使用显式等待确保元素可见
code_located = WebDriverWait(driver, 10).until(
        EC.visibility_of_element_located(
            (By.XPATH, '元素XPATH路径')))

# 将元素保存在当前目录
code_located.screenshot('code.png')

2.进行ocr识别

# 使用百度ocr识别获取验证码图片内容
request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/accurate_basic"
# 二进制方式打开图片文件
f = open("验证码图片路径", 'rb')
img = base64.b64encode(f.read())

params = {"image": img}
access_token = "百度ocr识别鉴权token" 
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)


if response:
    print(response.json())  # 返回ocr识别结果

3.将识别结果填入登录页面并登录

# 处理百度ocr返回的字典数据
target_str = response.json()['words_result'][0]['words'].replace(' ', '')

# 获取登录页元素
username = driver.find_element(By.XPATH,'//input[@placeholder="请输入帐户名"]')
password = driver.find_element(By.XPATH,'//input[@placeholder="请输入密码"]')
code = driver.find_element(By.XPATH,'//input[@placeholder="请输入验证码"]')
login_button = driver.find_element(By.ID, '//button[@type="submit"]')

# 操作登录页元素
username.clear()
username.send_keys("账号")

password.clear()
password.send_keys("密码")

code.send_keys(target_str)

login_button.click()

五、官网教程

官网教程:百度云智教育

获取官方接口文档:文字识别OCR

获取access_token:通用参考 - 鉴权认证机制 | 百度AI开放平台

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值