矩阵快速幂 - 半口学气! - 博客园

本文介绍了矩阵的基本概念,包括加减法和乘法规则,并展示了矩阵快速幂在递推问题中的应用,如Fibonacci数列和方块涂色问题。通过实例演示了如何构建转移矩阵和利用矩阵乘法加速递推,适用于递推轮数大但矩阵维度小的场景。
摘要由CSDN通过智能技术生成

by lcx,zjy

基础知识

矩阵:由 m\times n 个数排成的m行n列的数表
其实就是二维数组

矩阵加减法

矩阵加减法的规则:A\pm B=C

其中 C[i][j]A[i][j] B[i][j] 的和或差,即: C_{i j}=A_{ij}\pm B_{ij}

因此,相加减的两个矩阵 A :B 的行列必须相同

矩阵乘法

矩阵乘法的规则:A\times B=C

其中 C[i][j] 为A的第i行与B的第j列对应乘积的和,即: C_{i j}=\displaystyle \sum^n_{k=1}a_{ik}* b_{kj}

显然两个相乘是要一行和一列对应乘,那么矩阵乘法是需要A的行数B的列数相等的,这是A*B的前提条件

这里给个例子帮助理解:

\left[ \begin{matrix} a &b \\c &d\\e&f\end{matrix} \right]* \left[ \begin{matrix} g &h&i \\j &k&l\end{matrix} \right]=\left[ \begin{matrix} ag+bj &ah+bk&ai+bl \\cg+dj &ch+dk&ci+dl\\eg+fj&eh+fk&ei+fl\end{matrix} \right]

交换即是

\left[ \begin{matrix} g &h&i \j &k&l\end{matrix} \right]*\left[ \begin{matrix} a &b \c &d\e&f\end{matrix} \right]=\left[ \begin{matrix} ag+ch+ei &bg+dh+fi\aj+ck+el&bj+dk+fl\end{matrix} \right]

可见矩阵的乘法是不满足交换律

然后就可以发现,矩阵C 的行数应该是A 的行数,列数应该是B 的列数,并且C 也是一个方阵(行数和列数相等的矩阵)

代码

int c[N][N];
void Mul(int a[][N],int b[][N],int n){//n是矩阵大小
    memset(c,0,sizeof(c));
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            for(int k=1;k<=n;k++){
                c[i][j]+=a[i][k]*b[k][j];
            }
        }
    }
}

应用

矩阵快速幂加速递推

矩阵快速幂

矩阵幂就是算 A^n

根据矩阵乘法,可以发现矩阵乘法满足结合律:

证明:

上面两式子都等于

于是——

假设A是 n*n 的矩阵,则有:

A = \begin{cases} A, & 当m = 1时 \ (A^{\frac m2})^2, & 当m为偶数时 \ (A^{\frac m2})^2\times A, & 当m为奇数时 \end{cases}

这个分段函数说明了矩阵快速幂的可行性,然后我们就可以得出算法:

把快速幂算法中的乘法改成矩阵的乘法就可以了

不过呢,还有一个问题,ans一开始的初始化是什么?

ans的初始化就相当于普通快速幂需要初始化为1,即乘上这个矩阵值不改变

可以发现:对于任意2 \times 2 的矩阵,乘矩阵 \left[ \begin{matrix} 1 &0 \0 & 1\end{matrix} \right] 值不变,因此可以设其为初始矩阵

由此可推,ans的初始化就是对角线是1其他全是0

struct node{
    int z[N][N];
};
node mul(node a,node b){//矩阵乘法 
    node ans;
    memset(ans.z,0,sizeof(ans.z));
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
            for(int k=0;k<N;k++)
                ans.z[i][j]=(ans.z[i][j]+a.z[i][k]*b.z[k][j]%mod)%mod;
    return ans;
}
node power(int cnt){//快速幂,只不过底数换成了矩阵
    node ans,A;
    memset(ans.z,0,sizeof(ans.z));
    //A一些赋值 
    for(int i=0;i<N;i++)ans.z[i][i]=1;//ans的赋值 
    while(cnt){
        if(cnt&1)//奇数的话ans*A
            ans=mul(ans,A);
        A=mul(A,A);//A平方
        cnt>>=1;//幂次/2
    }
    return ans;
}

ps:时间复杂度 O(n^3logm)

那么我们应该怎么加速递推呢?

先看一个简单的例子:

[POJ3070]Fibonacci

在Fibonacci整数序列中,F_0 = 0, F_1 =1,和F_n = F_{n−1} + F_{n−2} (n≥2).给定整数n(0≤n≤10^9) ,计算F_n .

1.列解析式:显然: F(n)=F(n-1)+F(n-2) ,但这个数据范围就不是很显然了。

2.建立矩阵递推式,找到转移矩阵:

分析题目可以知道:

F[i]=1*F[i-1]+1 *F[i-2]

F[i-1]=1*F[i-1]+0 *F[i-2]

将以上两个式子结合可得:

\left[ \begin{matrix} F_{i-1} &F_{i-2} \end{matrix} \right]*\left[ \begin{matrix} 1 &1 \\1 &0 \end{matrix} \right]=\left[ \begin{matrix} F_i &F_{i-1}\end{matrix} \right]

简写成 F(n-1)*A=F(n) ,A矩阵就是那个2*2的常数矩阵

我们还可以把上述式子转换一下:

( F[i] , F[i-1] )=( F[i-1] ,F[i-2] )*A=( F[i-2] ,F[i-3] ) *A *A

最后可以得到:(F[n] F[n-1])=(F[1] ,F[0] )*A^{n-1} ,即:F(n)=F(1) *A^{n-1}

就愉快的转换成算矩阵快速幂了

于是——

考虑情况: F1*n 的矩阵,$ A nn的矩阵,则 F'= FA$也是1*n 的矩阵

F F' 可以看作是一维数组,省略他们的行下标1,按照矩阵乘法的定义,有:

$ F'j=\displaystyle\sum{k=1}^nF_k*A_{kj}$

可以认为,通过乘上矩阵A ,从原始状态F 递推到了F' 状态:

\left[ \begin{matrix} F_1 &F_2 &F_3 \end{matrix} \right]\times \left[ \begin{matrix} A_{11} &A_{12} &A_{13} \\A_{21} &A_{22} &A_{23} \\A_{31} &A_{32} &A_{33}\end{matrix} \right]=\left[ \begin{matrix} F'_1 &F'_2 &F'_3\end{matrix} \right]
那么如果假设目标状态为G ,递推矩阵为A ,初始条件为F ,则可得出:

G=A^n*F

因为我们已经会了矩阵快速幂算法,所以唯一需要我们考虑的问题就是如何构造递推矩阵A

再看几道题目:

Fibonacci前n项和

Fibonacci数列,f[1]=1,f[2]=1,f[n]=f[n-1]+f[n-2],(n>2 ),输入n和m,求前n项和模m的值。(1\leq n\leq 2\times 10^{9} ,1\leq m\leq 1\times 10^9+10 )

设$ \ s[n]表示前 \ n $项和,可推出:

$s[n]=1 * s[n-1]+1* f[n]+0\ f[n-1]\f[n+1]=0\ s[n-1]+1f[n]+1\ f[n-1]\f[n]=0 \ s[n-1]+1\ f[n]+0*\ f[n-1] $

因此,可得矩阵:

[\ s[n]\ f[n+1]\ f[n]\ ]=[s[n-1]\ f[n]\ f[n-1]\ ]*\left[ \begin{matrix} 1 & 0 & 0 \1 & 1 & 1\0 &1 & 0 \end{matrix} \right]

剩下的就和上一题一样了

[POJ3734]方块涂色

N个方块排成一列 用红,蓝,绿,黄4种颜色去涂色,求红色方块 和绿色方块个数同时为偶数的 方案数 对10007取余

1.列解析式

先定义状态分析递推式:假设已涂完前i个方块,有:
$ a[i]表示从1~i的方块中,红、绿方块数量都是偶数的方案数 b[i]表示从1~i的方块中,红、绿方块数量一个是偶数一个是奇数的方案数 c[i]$表示从1~i的方块中,红、绿方块数量都是奇数的方案数
初始:a(0)=1; b(0)=0; c(0)=0

分析a数组递推过程:

1.到i时红和绿的方格个数都是偶数,且i+1个方块被染成了蓝或黄色

2.到i时红和绿的方格个数一偶一奇,

且i+1个方块被染成了奇数个所对应的颜色

可得:a[i+1]=2*a[i]+b[i]

b与c的分析如上,可得:

b[i+1]=2*a[i]+2*b[i]+2*c[i]
c[i+1]=b[i]+2*c[i]

2.建立矩阵递推式,找到转移矩阵:

由上可得:

\left[ \begin{matrix} a_i&b_i&c_i\end{matrix} \right] *\left[ \begin{matrix} 2&2&0 \1&2&1\0 &2& 2 \end{matrix} \right]=\left[ \begin{matrix} a_{i+1}&b_{i+1}&c_{i+1}\end{matrix} \right]

矩阵快速幂加速递推题目特点

1.可以抽象为长度为n的一维数组(即状态矩阵),矩阵在单位时间内变化一次

2.变化的形式是线性递推(只有若干”加法“或“乘以一个系数”的运算)

3.递推轮数大,但矩阵长度n不大

构建矩阵递推的大致套路

上文常数矩阵$ A 就叫做**转移矩阵**,它能把 F[n-1] 转移到 F[n] ;然后这就是个等比数列,直接写出通项 F[n]=A^{n-1}*F[1]此处 f[1] $叫初始矩阵。

关键在于定义出状态矩阵和转移矩阵。

一般$ F[n] F[n-1] 都是按照原始递推式来构建的,当然可以先猜一个 F[n] $。

复杂度$ O(n^3logT), T $是递归总轮数


矩阵表示修改

[THUSCH2017] 大魔法师

题目大意:n颗球,一颗球里有三个数A B C 。有m次操作,每次操作选择一个区间[l,r] 进行一下七种操作之一:

1.A_i=A_i+B_i

2.B_i=B_i+C_i

3.C_i=C_i+A_i

4.A_i=A_i+v

5.B_i=B_i\times v

6.C_i=v

7.输出\displaystyle\sum_{i=l}^rA_i ,\displaystyle\sum_{i=l}^rB_i ,\displaystyle\sum_{i=l}^rC_i

对于区间修改,我们第一想法是线段树。但是每次修改都与该点中其他属性有关,故不能整体修改

于是就想矩阵乘法来改变状态:

把一颗球看作一个1\times 4 的矩阵[A,B,C,1] (最后一个1 用来维护常项)

于是我们可以很轻易的推出转移矩阵:

1.[A,B,C,1]\times \begin{bmatrix} 1 & 0&0&0 \\ 1 & 1&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix}=[A+B,B,C,1]

2,3同理可得

4.[A,B,C,1]\times \begin{bmatrix} 1 & 0&0&0 \\ 0 & 1&0&0\\0&0&1&0\\v&0&0&1 \end{bmatrix}=[A+v,B,C,1]

5.[A,B,C,1]\times \begin{bmatrix} 1 & 0&0&0 \\ 0 & v&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix}=[A,B*v,C,1]

6.[A,B,C,1]\times \begin{bmatrix} 1 & 0&0&0 \\ 0 & 1&0&0\\0&0&0&0\\0&0&v&1 \end{bmatrix}=[A,B,v,1]

以第一种操作为例子,如果要修改[l,r] 中的数据,那就把这段区间全部都乘一个\begin{bmatrix} 1 & 0&0&0 \\ 1 & 1&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix} 就好了,于是就可以用线段树来维护了

[BZOJ2973]石头游戏

大意:有一个n m (0\leq n,m\leq 8) 的矩阵,还有一个与之对应的n m 列操作序列,一共有act 种操作序列,编号0到(act-1) (0\leq act\leq10) 每一种操作序列都是长度不超过6,循环执行,一秒一个,所有格子同时进行包括:

数字0-9:拿0-9个石头到该格子

NWSE:把这个格子内所有的石头推到相邻的格子,N表示上方,W表示左方,S表示下方,E表示右方

D:拿走这个格子的石头。

问t秒(1\leq t\leq10^9) 之后,所有方格中石头最多的格子有多少个石头

问题分析:

以样例为例,设定一维矩阵F_t=[a_1\ a_2\ a_3\ a_4\ a_5\ a_6] 表示t 秒时当前每个格子的石子数量,特别的,再加一个a_0 ,使得a_0 始终为1 ,所以,转移矩阵T_i 0 列有且只有第0 行为1

初始状态矩阵就是F_0=[a_0=1\ a_1=0\ a_2=0\ a_3=0\ a_4=0\ a_5=0\ a_6=0]

第一秒的操作为1,E,E,E,E,0 ,第1个格子+1,第2,3,4,5个格子推向右方,第6个格子不移动不添加

所以可以构造出转移矩阵T_1=\begin{bmatrix} 1 & 1&0&0&0&0&0 \\ 0 & 1&0&0&0&0&0\\0&0&0&1&0&0&0\\0&0&0&0&1&0&0\\0&0&0&0&0&1&0\\0&0&0&0&0&0&1 \\0&0&0&0&0&0&1 \end{bmatrix}

因此也可以通过相同的方法找到T_2 T_3 T_4 T_5 ...

因为n m 的数据范围较小,所以我们可以把n m 列的网络转化为长度为n\times m 的一维矩阵

F_t=[a_{(1,1)},a_{(1,2)}...a_{(1,m)},a_{(2,1)}...a_{(n,m)}] ,其中a_{(i,j)} 在一维矩阵第(i-1)\times m+j 个位置,令S(i,j)=(i-1)\times m+j ,也再加一个 a_0 ,始终为1

因为每个操作序列的长度不超过6 ,且1-6 的最小公倍数为60 ,所以每经过60 秒,操作序列又会从最开始的字符开始,因此需要构造60 (n\times m+1)\times (n\times m+1) 转移矩阵T ,包含第0-(n\times m) 行和第0-(n\times m)

转移矩阵T_i(1\leq i\leq 60) 的构造方法:

回顾:状态矩阵F_i 所有元素与转移矩阵T_{i+1} i 列所有元素分别相乘的和,得到状态矩阵F_{i+1} i 个元素的数值

注:以下操作均不计除了当前石子外,其他石子的操作对此石子的影响

若操作数字为0-9 ,设数值为x ,所以T_i S(i,j) 0 x ,第S(i,j) S(i,j) 1

若为字符N ,则转移矩阵第S(i,j) S(i-1,j) 1 ,字符W,S,E 类似

若为字符D ,则转移矩阵此列不做处理

为了保证F_i(0) 始终为1 ,所有转移矩阵T_i 0 列有且只有第0 行为1

所以需要将T_1-T_{60} 全部求解出来,令TT=T_1\times T_2\times ...\times T_{60}

t 秒后:

状态矩阵F_t=F_0*TT^{\frac{t}{60}}*(T_1\times T_2\times ...\times T_r),r=t\%60

其中TT^{\frac{t}{60}} 可以用矩阵快速幂求解,最后求F_t 1-(n\times m) 列的最大值即可

又可以发现一个规律:

如果在应用矩阵乘法时,遇到常数项,经常需要在“状态矩阵”中添加一个额外的位置,始终储存常数1 ,并乘上“转移矩阵”中适当的系数,累加到“状态矩阵”的其他位置


矩阵乘法与邻接矩阵

[TJOI2017]可乐

题目:

加里敦星球的人们特别喜欢喝可乐。因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的1 号城市上。这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆。它每一秒都会随机触发一种行为。现在给加里敦星球城市图,在第0 秒时可乐机器人在1 号城市,问经过了t 秒,可乐机器人的行为方案数是多少?

N 表示城市个数,M 表示道路个数。

保证两座城市之间只有一条路相连,且没有任何一条道路连接两个相同的城市。

1 < t \leq 10^6, 1≤N≤30,0<M<100,1 \leq u, v \leq N

分析:

先用邻接矩阵存图(两个点之间若有边则A[u][v]=1)

如果我们没有在原地停留和自爆两个操作,那么就是问从起点出发,走t步的不同路径数

令该图的邻接矩阵是G ,那么我们考虑 G^2 是个什么东西

我们单独考虑某一行和某一列的相关运算:令其为 G_{a,i} G_{i,b}G′ 为相乘得到的矩阵,那么会有

$ G'{a,b}=\displaystyle \sum^m{i=1} G_{a,i}*G_{i,b}$

容易发现,当且仅当 G{a,i}G{i,b} 都不为零,即i 点可连通 a,b 两点的时候上式的该项才为1 , 否则为0

那么所有的这些情况累加起来,就是从a b 长度为2 的路径条数(即方案数)

所以,G^2 得到的矩阵其实表示了任意两点间长度为2的方案数

(也从floyd 算法的角度考虑)那么不难发现G^k 的第i 行第j 列的数字含义是从i j 经过k 步的路径方案总数

那么在原地停留和自爆怎么处理?

在原地停留很简单,我们只要认为每个点都有一个从自己到自己的自环即可。

那自爆呢?

我们可以将自爆这个状态也看成一个城市,就设它为编号0

我们在邻接矩阵上从每个点都向这个点连一条边,这个点除了自己外不连其他出边。

这样就满足了任何一个点随时可以自爆,且无法恢复到其他状态。

最后,统计答案Ans=\sum\limits_{i=0}^{n}A[1][i]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值