矩阵快速幂加速递推

矩阵快速幂是一种优化递推的算法,可以用来求解递推式的第n项。它的基本思想是将递推式转化为矩阵形式,通过多次矩阵乘法来快速求解。在一些需要大量递推的问题中,矩阵快速幂可以大大减少运算次数,提高效率。

以下是一个斐波那契数列的例子,用矩阵快速幂来求解第n项。

首先,斐波那契数列的递推式为:F(n) = F(n-1) + F(n-2),其中F(0)=0,F(1)=1。

将递推式转化为矩阵形式:[F(n), F(n-1)] = [F(n-1), F(n-2)] * [1, 1; 1, 0]

也就是说,我们可以通过计算矩阵[[1, 1; 1, 0]]的n次方,来得到第n项斐波那契数。

下面是Python代码实现:

def matrix_power(a, n):
    """
    计算矩阵a的n次方
    """
    res = [[1, 0], [0, 1]]  # 初始化为单位矩阵
    while n > 0:
        if n & 1:  # 如果n是奇数
            res = matrix_multiply(res, a)
        a = matrix_multiply(a, a)
        n >>= 1
    return res

def matrix_multiply(a, b):
    """
    计算矩阵a和矩阵b的乘积
    """
    c = [[0, 0], [0, 0]]
    for i in range(2):
        for j in range(2):
            for k in range(2):
                c[i][j] += a[i][k] * b[k][j]
    return c

def fib(n):
    """
    计算斐波那契数列的第n项
    """
    if n == 0:
        return 0
    a = [[1, 1], [1, 0]]
    a_n = matrix_power(a, n-1)
    return a_n[0][0]

可以看到,我们用matrix_power函数来计算矩阵的n次方,这里用了一种二分法的思想,将n拆成二进制后,每一位对应一个矩阵的乘积。而matrix_multiply函数则用来计算两个矩阵的乘积。最终,我们用fib函数来计算第n项斐波那契数。

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值