洛谷 Cantor 表

题目描述:

现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/11/1 , 1/21/2 , 1/31/3 , 1/41/4, 1/51/5, …

2/12/1, 2/22/2 , 2/32/3, 2/42/4, …

3/13/1 , 3/23/2, 3/33/3, …

4/14/1, 4/24/2, …

5/15/1, …

我们以 Z 字形给上表的每一项编号。第一项是 1/11/1,然后是 1/21/2,2/12/1,3/13/1,2/22/2,…

输入格式

整数NN(1 \leq N \leq 10^71≤N≤107)。

输出格式

表中的第 NN 项。

输入输出样例

输入 

7

输出 

1/4
import java.util.Scanner;

public class Cantor表 {
	public static void main(String[] args) {
		Scanner sc = new Scanner (System.in);
		int N = sc.nextInt();
		int r=1;
		while(N>r)
		{
			N= N-r;
			r++;
		}
		if (r%2==0) System.out.println(N+"/" + (r-N+1));
		else System.out.println((r-N+1)+ "/" + N); 
		
				
		
	}

}

 代码解释:因为本题参考他人的代码,就在一些不易理解的地方加以阐述。要斜着看,即斜行。观察发现,第几个斜行就有几个数。while循环 + N=N-r,通过每一次的N=N-r 就可以知道距离要找到的数字还有几个数(一定要注意第几个斜行就有几个数字)再通过r++,就可找到。

注意: 因为不知道循环多少次,不能用for循环,要采用while循环。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值