题目描述:
现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:
1/11/1 , 1/21/2 , 1/31/3 , 1/41/4, 1/51/5, …
2/12/1, 2/22/2 , 2/32/3, 2/42/4, …
3/13/1 , 3/23/2, 3/33/3, …
4/14/1, 4/24/2, …
5/15/1, …
…
我们以 Z 字形给上表的每一项编号。第一项是 1/11/1,然后是 1/21/2,2/12/1,3/13/1,2/22/2,…
输入格式
整数NN(1 \leq N \leq 10^71≤N≤107)。
输出格式
表中的第 NN 项。
输入输出样例
输入
7输出
1/4
import java.util.Scanner;
public class Cantor表 {
public static void main(String[] args) {
Scanner sc = new Scanner (System.in);
int N = sc.nextInt();
int r=1;
while(N>r)
{
N= N-r;
r++;
}
if (r%2==0) System.out.println(N+"/" + (r-N+1));
else System.out.println((r-N+1)+ "/" + N);
}
}
代码解释:因为本题参考他人的代码,就在一些不易理解的地方加以阐述。要斜着看,即斜行。观察发现,第几个斜行就有几个数。while循环 + N=N-r,通过每一次的N=N-r 就可以知道距离要找到的数字还有几个数(一定要注意第几个斜行就有几个数字)再通过r++,就可找到。
注意: 因为不知道循环多少次,不能用for循环,要采用while循环。