看完题目就明白,这道题是要让我们求出一段连续的长度为k的子序列之和的最大值。首先最容易想到的就是一个一个加。但这道题数据范围是n<=100000,如果每次在列举长度为k的子序列之和时,都去跑一遍k的循环,时间复杂度就为n*k,必定超时。这是就要思考优化。而这道题我选择了使用前缀和。
前缀和概念
我们可以用一个数组存下从1到i个数的总和。而s数组的值可以通过递推得到。公式即s[i]=s[i-1]+a[i]。应该很好理解。那么这个前缀和有什么用呢?下面就是这道题的重点。举个栗子,现在我们已经得到了所有的前缀和,要算出从第a个数到第b个数的和,是不是只需要用s[b]-s[a-1]即可?因为用第1个数到第b个数的和减去到第a-1个数的和,就是第a个数到第b个数的和
使用前缀和的原因
为什么前缀和可以优化这道题的时间复杂度?如果用直接算法,求出每一个子序列的和需要循环k次,而加入前缀和进行预处理之后,我们可以在更短的时间求出这段和。
代码
#include<iostream>
#include<cstdio>
using namespace std;
int n,k,a[100005],s[100005],ans=-0x7fffffff/2;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];
}
for(int i=k;i<=n;i++) ans=max(ans,s[i]-s[i-k]);
printf("%d\n",ans);
return 0;
}