最大和(洛谷题号AT2412)

看完题目就明白,这道题是要让我们求出一段连续的长度为k的子序列之和的最大值。首先最容易想到的就是一个一个加。但这道题数据范围是n<=100000,如果每次在列举长度为k的子序列之和时,都去跑一遍k的循环,时间复杂度就为n*k,必定超时。这是就要思考优化。而这道题我选择了使用前缀和。

前缀和概念   

         我们可以用一个数组存下从1到i个数的总和。而s数组的值可以通过递推得到。公式即s[i]=s[i-1]+a[i]。应该很好理解。那么这个前缀和有什么用呢?下面就是这道题的重点。举个栗子,现在我们已经得到了所有的前缀和,要算出从第a个数到第b个数的和,是不是只需要用s[b]-s[a-1]即可?因为用第1个数到第b个数的和减去到第a-1个数的和,就是第a个数到第b个数的和

使用前缀和的原因

为什么前缀和可以优化这道题的时间复杂度?如果用直接算法,求出每一个子序列的和需要循环k次,而加入前缀和进行预处理之后,我们可以在更短的时间求出这段和。

 

代码

#include<iostream>

#include<cstdio>

using namespace std;

int n,k,a[100005],s[100005],ans=-0x7fffffff/2;

int main(){

    scanf("%d%d",&n,&k);

    for(int i=1;i<=n;i++){

        scanf("%d",&a[i]);

        s[i]=s[i-1]+a[i];

    }

    for(int i=k;i<=n;i++) ans=max(ans,s[i]-s[i-k]);

    printf("%d\n",ans);

    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值