大规模语言模型LLM
大规模语言模型
向量数据库和数据库向量支持。
LLM基础设施:编程语言
Python,Java,C++ ,js,新秀语言Mojo。
-
- Mojo
这个语言是具有python和C++,各取所长。结合了python的易用性和C语言的可移植性。性能是python的68000倍。
知名大模型应用:
Midjourney:最强文本生成图像AI应用
ChatGPT:最强生成式对话大模型产品
HeyGen:年度最火热AI视频生成工具
APUS:千亿级多模态通用AI大模型
Codeverter:代码转换器
Poe:集成主流大模型的对话机器人
AI编程工具:
目前最常见的 AI 编程工具大多以插件、 IDE 和终端
的形式出现, 它们大多交互直观且使用门槛低, 大大
提高了 AI 编程工具的使用率。
GitHub Copilot 和 Codeium 是比较常见的 AI 编程
插件, 而 Cursor 和 Warp 分别是具有 AI 编程能力
的 IDE 和终端工具。
除了海外产品, 国内如姜子牙、 CodeFuse、
LLM 世界的基石: 算力
LLM 的算力指的是执行这些模型所需的计算资源。 这包括用于训练和运行模型的硬件( 如 GPU 或 TPU) 、 内存、 存储空间以及处理
大量数据的能力。 LLM 需要非常强大的算力来处理、 理解和生成文本, 因为它们涉及到数十亿甚至数万亿个参数的训练和推理。
LLM 的基石是算力, 而算力的基石是硬件, 硬件的性能直接影响着计算任务的速度、 效率和能力