大规模语言模型LLM介绍

本文介绍了大规模语言模型(LLM)的发展,特别是Mojo语言的优势,以及其在实际应用中的体现,如Midjourney、ChatGPT等。同时,探讨了LLM对算力的需求,包括硬件在支撑这些模型中的关键作用。AI编程工具如GitHubCopilot和国内产品也在文中被提及.
摘要由CSDN通过智能技术生成
 大规模语言模型LLM

大规模语言模型

向量数据库和数据库向量支持。

LLM基础设施:编程语言

Python,Java,C++ ,js,新秀语言Mojo。

    1. Mojo

这个语言是具有python和C++,各取所长。结合了python的易用性和C语言的可移植性。性能是python的68000倍。

知名大模型应用:

Midjourney:最强文本生成图像AI应用

ChatGPT:最强生成式对话大模型产品

HeyGen:年度最火热AI视频生成工具

APUS:千亿级多模态通用AI大模型

Codeverter:代码转换器

Poe:集成主流大模型的对话机器人

AI编程工具:

目前最常见的 AI 编程工具大多以插件、 IDE 和终端
的形式出现, 它们大多交互直观且使用门槛低, 大大
提高了 AI 编程工具的使用率。
GitHub Copilot 和 Codeium 是比较常见的 AI 编程
插件, 而 Cursor 和 Warp 分别是具有 AI 编程能力
的 IDE 和终端工具。
除了海外产品, 国内如姜子牙、 CodeFuse、

LLM 世界的基石: 算力

LLM 的算力指的是执行这些模型所需的计算资源。 这包括用于训练和运行模型的硬件( 如 GPU 或 TPU) 、 内存、 存储空间以及处理
大量数据的能力。 LLM 需要非常强大的算力来处理、 理解和生成文本, 因为它们涉及到数十亿甚至数万亿个参数的训练和推理。
LLM 的基石是算力, 而算力的基石是硬件, 硬件的性能直接影响着计算任务的速度、 效率和能力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值