本质:大模拟(个人理解有错不要开骂哈)
单调队列性质:
1.内部元素大小单调递增or递减or在自己的规则内按合法顺序进行排列
2.内部元素在原序列中的次序必须单调递增
实现:使用双端队列(deque)
滑动窗口:多用来求一个序列区间中的最值
实现思路:
1.构造一个结构体单调队列,结构体成员分别为数字本身及其在原序列中的位置
2.确定窗口大小之后,每在一个新的元素加入单调队列之后,判断队首元素位置是否在窗口内,若不在,则pop_front掉或将窗口左指针右移
求最值思路:
1.窗口左指针指向的位置为该区间的最小值(在递增的单调队列中)
2.反之,则左指针指向最大值(在递减的单调队列中)
实现:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll n,k,a[5000005],ans[5000005][2];
struct node{
ll pl,num;
};
deque<node>lo/*单调递减*/,up/*单调递增*/;
int main(){
scanf("%lld%lld",&n,&k);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=1;i<=k;i++){
while(!lo.empty()&&lo.back().num<=a[i])
lo.pop_back();
while(!up.empty()&&up.back().num>=a[i])
up.pop_back();
node aa;
aa.pl=i,aa.num=a[i];
lo.push_back(aa),up.push_back(aa);
}
ans[1][0]=up.front().num,ans[1][1]=lo.front().num;
for(int i=k+1;i<=n;i++){
while(!lo.empty()&&lo.front().pl<=i-k)
lo.pop_front();
while(!up.empty()&&up.front().pl<=i-k)
up.pop_front();
while(!lo.empty()&&lo.back().num<=a[i])
lo.pop_back();
while(!up.empty()&&up.back().num>=a[i])
up.pop_back();
node aa;
aa.pl=i,aa.num=a[i];
lo.push_back(aa),up.push_back(aa);
ans[i-k+1][0]=up.front().num,ans[i-k+1][1]=lo.front().num;
}
for(int i=1;i<=n-k+1;i++)
printf("%lld ",ans[i][0]);
cout<<endl;
for(int i=1;i<=n-k+1;i++)
printf("%lld ",ans[i][1]);
return 0;
}