Day49- 动态规划part17

一、回文子串

题目一:647. 回文子串

647. 回文子串

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

定义一个二维数组 dp[i][j],其中 ij 分别表示字符串的起始和结束索引(包含 ij),dp[i][j] 表示子串 s[i...j] 是否为回文串。如果是回文串,dp[i][j] 为真(或1),否则为假(或0)。

动态规划算法步骤

  1. 初始化:首先初始化二维数组 dp,所有元素设置为0。

  2. 基本情况

    • 对于所有单字符子串 s[i...i],设置 dp[i][i] = 1,因为单字符总是回文。
    • 对于所有双字符子串 s[i...i+1],如果 s[i] == s[i+1],则设置 dp[i][i+1] = 1
  3. 状态转移:对于长度大于2的子串,s[i...j] 是回文当且仅当 s[i] == s[j]s[i+1...j-1] 也是回文。因此,如果 dp[i+1][j-1] == 1s[i] == s[j],则设置 dp[i][j] = 1

  4. 计数:遍历 dp 数组,统计值为1的元素个数,即为回文子串的总数

class Solution {
public:
    int countSubstrings(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n, vector<bool>(n, false));
        int count = 0;

        for (int i = 0; i < n; i++) {
            dp[i][i] = true;
            count++;
        }

        for (int i = 0; i < n - 1; i++) {
            if (s[i] == s[i + 1]) {
                dp[i][i + 1] = true;
                count++;
            }
        }

        for (int len = 3; len <= n; len++) {
            for (int i = 0; i + len <= n; i++) {
                int j = i + len - 1; 
                if (s[i] == s[j] && dp[i + 1][j - 1]) {
                    dp[i][j] = true;
                    count++;
                }
            }
        }

        return count;
    }
};

二、最长回文子序列

题目一:516. 最长回文子序列

516. 最长回文子序列

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

如果知道字符串s[i+1...j-1]的最长回文子序列,那么可以根据s[i]s[j]的关系来确定s[i...j]的最长回文子序列。

动态规划算法步骤

  1. 定义状态:定义一个二维数组dp,其中dp[i][j]表示字符串s[i...j]的最长回文子序列的长度。

  2. 初始化:对于所有idp[i][i] = 1,因为单个字符的最长回文子序列长度为1。

  3. 状态转移方程

    • 如果s[i] == s[j],那么dp[i][j] = dp[i+1][j-1] + 2,因为两端的字符可以加到s[i+1...j-1]的最长回文子序列的两端,形成一个更长的回文子序列。
    • 如果s[i] != s[j],那么dp[i][j] = max(dp[i+1][j], dp[i][j-1]),因为最长回文子序列要么在s[i+1...j]中,要么在s[i...j-1]中。
  4. 计算顺序:从底向上计算,即先计算小的子问题,再利用小的子问题来解决大的子问题。这意味着需要按照j-i的增序来遍历所有的子串。

  5. 返回结果dp[0][n-1]即为整个字符串s的最长回文子序列的长度,其中n是字符串s的长度。

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int>> dp(n, vector<int>(n, 0));
        for (int i = n - 1; i >= 0; --i) {
            dp[i][i] = 1;  
            for (int j = i + 1; j < n; ++j) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][n - 1];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值