- 博客(11)
- 收藏
- 关注
原创 随机信号处理-P8-特征分解法(Music算法)与“折翼改”方案优化
经过折翼法的矩阵求逆的修改版(只关注被标记“没有被清空对角线下方”的行,因为别的行只需要关注对角线上的值就可以了),这种方案被我命名为“折翼改”。
2024-06-08 20:59:21
206
原创 随机信号处理-P7-AR模型:Burg算法与“Tsumugi”方案优化
经过我的观察,这个算法在抬升e的阶次时,是在使用上一阶的后向预测误差的前一项和前向误差的这一项来求出这一阶次的e的这一项,那么如果项数从高到低,先求后向再折返求前向,就可以在这一阶次的前向误差被覆写前完成两次调用和计算,时间平均实质上就是用了一个无偏非一致估计来替代了原本的期望(所以说这样所见了数据利用率,而从N-m取到N就是为了最大化利用数据),两组方程交替使用可以进行递推。这个值和真正的Rx还是有一定差距的,所以这次我们绕过它,选用前后向预测误差来代替之以求反射系数。,降低了空间复杂度。
2024-06-08 20:36:13
95
原创 随机信号处理-P6-AR模型:Levinson-Durbin算法
由于ρ的格式和物理学中的“光反射”接近,所以km又叫“反射系数”,只有在其平方小于1时,系统才因果稳定,所以只要监测到该条件不再满足,或者ρ变化量小于约定的最小值(也就是之后抬升阶次p的意义已经不大)时就应予以中断并输出。在处理时,可以明显看出无需用到比当前早炒股异界的数据,所以可以使用递归的办法来释放内存,实现数组的一维化,进而大幅降低程序的空间复杂度,而这个也是“Tsumugi方案”的前身。分析Y-W方程,我们令ρ=G²,观察其在阶数p增加时的变化。依序递推可以得到逐阶拓展的AR模型。
2024-06-08 20:16:16
322
原创 随机信号处理-P5-AR模型:Yule-Walker算法与“折翼”方案优化
我使用了基于行变换的方法实现了矩阵求逆,使得主对角线左下方全部为0而调整右上方的值(并做出数据溢出规避),将未能进行行变换的行标记并留待之后换至下方。,设w(n)为服从N(0,1)的高斯噪声,那么G²越小就证明估测越接近(也就是误差函数最小)。另外,我尝试的五千阶矩阵,程序运行时间压缩到了13分钟以内。a和r既是向量也是矩阵。
2024-06-08 19:55:50
293
原创 随机信号处理-P1-周期谱法之DFT
其缺点在于,首先收集到的信号只是所有信号的一部分,相当于被加了窗,因此周期谱法会受到主板的频谱展宽和旁瓣的频谱泄露;此外,由于傅里叶变换实质上是使用一段频率去做相关性分析,这也就导致频率相差2π的频率会在分析结果上重叠,而ω超过π的部分则会被偶对称过来与较低频率的结果重叠。其原理很简单,对随机信号求出“伪频谱”再平方可以得到功率谱密度,或者通过维纳-辛钦-爱因斯坦定理对自相关函数做傅里叶变换(但需要默认信号为广义平稳随机并承担相应的误差所以一般不采用)。
2024-06-08 17:13:47
176
原创 CSDN学习——测试博客
本博客仅用于测试,以辅助我对CSDN站点博客功能的学习、练习与探究,无实际意义。撒打算法撒旦方法aasfsfdsafdsaasfsadfsad。
2024-03-22 16:17:44
461
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅