- 博客(1)
- 收藏
- 关注
原创 Focal Loss为什么能够调节难易样本比重?
举个例子:当γ=2时,对于pt=0.9的易分样本,(1 - pt)^γ = 0.01,损失会被缩小到原来的1%;而pt=0.5的难样本,(1 - pt)^γ= 0.25,损失缩小到原来的25%。相比标准交叉熵,难样本的损失权重虽然被缩小了,但缩小的程度比易分样本要小,所以相对于易分样本,难样本的损失权重实际上是被放大了。对于负样本,预测概率接近0)难分类样本指预测接近0.5,那些模棱两可的。再看看图中不同的γ:γ越大,FL越小,但是中间降低得幅度小,两边降低得幅度大。首先,难易样本和正误样本是不同概念。
2025-03-09 12:04:31
220
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人