自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 收藏
  • 关注

原创 Focal Loss为什么能够调节难易样本比重?

举个例子:当γ=2时,对于pt=0.9的易分样本,(1 - pt)^γ = 0.01,损失会被缩小到原来的1%;而pt=0.5的难样本,(1 - pt)^γ= 0.25,损失缩小到原来的25%。相比标准交叉熵,难样本的损失权重虽然被缩小了,但缩小的程度比易分样本要小,所以相对于易分样本,难样本的损失权重实际上是被放大了。对于负样本,预测概率接近0)难分类样本指预测接近0.5,那些模棱两可的。再看看图中不同的γ:γ越大,FL越小,但是中间降低得幅度小,两边降低得幅度大。首先,难易样本和正误样本是不同概念。

2025-03-09 12:04:31 220

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除