Java中两个List之间的比较(差集,交集,并集)

本文详细介绍了如何使用Java API、优化解法以及Java 8新特性来实现List的差集、交集和并集操作,包括去重和不去重的场景。同时,结合业务场景,展示了如何处理渠道授权产品的状态变更,通过空间换时间策略降低时间复杂度,实现产品状态的高效标注。
摘要由CSDN通过智能技术生成

实现比较两个List之间的差异,包括获取两List的差集,交集,并集(不去重&去重)的API解法和优化解法的解决方案。

差集

/**
 * 差集(基于API解法) 适用于小数据量
 * 求List1中有的但是List2中没有的元素
 * 时间复杂度 O(list1.size() * list2.size())
 */
public static List<String> subList(List<String> list1, List<String> list2) {
    list1.removeAll(list2);
    return list1;
}

/**
 * 差集(基于常规解法)优化解法1 适用于中等数据量
 * 求List1中有的但是List2中没有的元素
 * 空间换时间降低时间复杂度
 * 时间复杂度O(Max(list1.size(),list2.size()))
 */
public static List<String> subList1(List<String> list1, List<String> list2) {
    //空间换时间 降低时间复杂度
    Map<String, String> tempMap = new HashMap<>();
    for(String str:list2){
        tempMap.put(str,str);
    }
    //LinkedList 频繁添加删除 也可以ArrayList容量初始化为List1.size(),防止数据量过大时频繁扩容以及数组复制
    List<String> resList = new LinkedList<>();
    for(String str:list1){
        if(!tempMap.containsKey(str)){
            resList.add(str);
        }
    }
    return resList;
}

/**
 * 差集(基于java8新特性)优化解法2 适用于大数据量
 * 求List1中有的但是List2中没有的元素
 */
public static List<String> subList2(List<String> list1, List<String> list2) {
    Map<String, String> tempMap = list2.parallelStream().collect(Collectors.toMap(Function.identity(), Function.identity(), (oldData, newData) -> newData));
    return list1.parallelStream().filter(str->{
        return !tempMap.containsKey(str);
    }).collect(Collectors.toList());
}

交集

/**
 * 交集(基于API解法) 适用于小数据量
 * 求List1和List2中都有的元素
 * 时间复杂度 O(list1.size() * list2.size())
 */
public static List<String> intersectList(List<String> list1, List<String> list2){
    list1.retainAll(list2);
    return list1;
}
/**
 * 交集(基于常规解法) 优化解法1  适用于中等数据量
 * 求List1和List2中都有的元素
 * 时间复杂度O(Max(list1.size(),list2.size()))
 */
public static List<String> intersectList1(List<String> list1, List<String> list2){
    //空间换时间 降低时间复杂度
    Map<String, String> tempMap = new HashMap<>();
    for(String str:list2){
        tempMap.put(str,str);
    }
    //LinkedList 频繁添加删除 也可以ArrayList容量初始化为List1.size(),防止数据量过大时频繁扩容以及数组复制
    List<String> resList = new LinkedList<>();
    for(String str:list1){
        if(tempMap.containsKey(str)){
            resList.add(str);
        }
    }
    return resList;
}
/**
 * 交集(基于java8新特性)优化解法2 适用于大数据量
 * 求List1和List2中都有的元素
 */
public static List<String> intersectList2(List<String> list1, List<String> list2){
    Map<String, String> tempMap = list2.parallelStream().collect(Collectors.toMap(Function.identity(), Function.identity(), (oldData, newData) -> newData));
    return list1.parallelStream().filter(str->{
        return tempMap.containsKey(str);
    }).collect(Collectors.toList());
}

并集(不去重)

/**
 * 并集(不去重)
 * 合并list1和list2 不考虑去除重复元素
 * 数组扩容 数组copy
 * @param list1
 * @param list2
 * @return
 */
public static List<String> mergeList(List<String> list1, List<String> list2){
    list1.addAll(list2);
    return list1;
}

并集(去重)

/**
 * 并集(去重) 基于API解法
 * 合并list1和list2 去除重复元素
 * 时间复杂度主要取决于removeAll 取差集 O(list1.size() * list2.size())
 */
public static List<String> distinctMergeList(List<String> list1, List<String> list2){
    //第一步 先求出list1与list2的差集
    list1.removeAll(list2);
    //第二部 再合并list1和list2
    list1.addAll(list2);
    return list1;
}
/**
 * 并集(去重) 基于Java8新特性 适用于大数据量
 * 合并list1和list2 去除重复元素
 */
public static List<String> distinctMergeList1(List<String> list1, List<String> list2){
    //第一步 先求出list1与list2的差集
    list1 = subList2(list1,list2);
    //第二部 再合并list1和list2
    list1.addAll(list2);
    return list1;
}

实际业务场景

根据客户需求,业务提交审核需要很直观的看到此次提交的数据关联产品的状态变更。
第一种情况:新增的渠道授权关联的产品,所有的授权产品均为新增;
第二种情况:已审核通过的渠道授权重新提交授权审核的,要直观的标记出此次提交审核渠道关联授权产品新增了那些,删除了那些,更改了那些等信息;
第三种情况:作废渠道提交的审核要标注出所有的关联授权产品为删除状态。

授权关联产品为申请表单中一对多关联表,前端展示根据数据的不同状态展示不同的样式:
新增授权产品显示为红色
删除授权产品显示为删除线样式(中划线 )
更新授权产品显示标注红色*号

建立关联产品Vo

首先模拟建立一个产品的实体,此处只简单列入几个属性,在比较所关联产品信息是否是变更状态的时候根据实际业务需要需重写 hashCode 和 equals 方法。

class ProductVo{
    private String id;
    private String name;
    //其他属性不在列入
    //数据状态(新增:insert; 更新:update; 删除:delete)
    private String status;
    //get set 省略
    //如有必要重写hashCode equals
}

业务代码实现

业务实现主要通过 空间换时间 方式降低时间复杂度,先把List转为Map,利用map的 get 和 containsKey 方法理想情况下O(1)的时间复杂度降低嵌套的两次List遍历。

/**
 * 渠道授权新提交关联授权产品 与 历史已审批授权信息对比处理标注授权产品的状态信息<br/>
 * 前端可以根据不同的数据状态显示不同的样式<br/>
 * 用于审核人员直接看到此次提交审核新增了那些授权,取消了那些授权,更改了那些授权
 * @param oldList  原始关联授权产品列表
 * @param newList  提交关联授权产品列表
 * @return
 */
public List<ProductVo> productStatusHandle(List<ProductVo> oldList,List<ProductVo> newList){
    //原始关联授权产品为空 并且 新关联授权产品为空(基本不存在此场景)
    if((oldList == null || oldList.isEmpty()) && (newList == null || newList.isEmpty())){
        return Collections.emptyList();
    }
    //原始关联授权产品为空 则提交关联授权产品全部为新增
    if(oldList == null || oldList.isEmpty()){
        return newList.stream().map(vo->{
            vo.setStatus("insert");
            return vo;
        }).collect(Collectors.toList());
    }
    //提交关联授权产品为空 则删除之前所有的产品授权
    if(newList == null || newList.isEmpty()){
        return oldList.stream().map(vo->{
            vo.setStatus("delete");
            return vo;
        }).collect(Collectors.toList());
    }
    //原始关联授权产品与此次提交关联授权产品均不为空
    List<ProductVo> resList = new LinkedList<>();
    //空间换时间 降低时间复杂度
    //说明:list中不会存在重复(ID相同)的授权产品 否则此toMap收集会抛出异常
    Map<String, ProductVo> oldMap = oldList.stream().collect(Collectors.toMap(ProductVo::getId, Function.identity()));
    Map<String, ProductVo> newMap = newList.stream().collect(Collectors.toMap(ProductVo::getId, Function.identity()));
    for(ProductVo vo:newList){
        ProductVo productVo = oldMap.get(vo.getId());
        //提交关联授权产品在原始关联授权产品
        if(productVo != null){
            if(!vo.equals(productVo)){//重写hashCode与equals自定义规则 用于判定是否数据更新
                vo.setStatus("update");
            }
        }else{//提交审核数据不在旧数据之列
            vo.setStatus("insert");
        }
        resList.add(vo);
    }
    //原始关联授权产品是否存在已取消的情况
    for(ProductVo vo:oldList){
        if(!newMap.containsKey(vo.getId())){
            vo.setStatus("delete");
            resList.add(vo);
        }
    }
    return resList;
}

在Python,可以使用不同的方法来计算列表的差集交集并集。 要计算两个列表的差集,可以使用for循环遍历列表元素,并使用条件语句判断元素是否存在于另一个列表。如果元素不在另一个列表,则将其添加到结果列表。这种方法适用于较小的列表,但在处理大型列表时效率较低。\[1\] 要计算两个列表的交集,可以使用集合的intersection方法。首先,将列表转换为集合,然后使用intersection方法找到两个集合的交集。最后,将结果转换回列表。这种方法更高效,特别是对于大型列表。\[2\] 要计算两个列表的并集,可以使用集合的union方法。与计算交集类似,首先将列表转换为集合,然后使用union方法找到两个集合的并集。最后,将结果转换回列表。\[3\] 下面是一个示例代码,展示了如何使用这些方法来计算差集交集并集: ```python # 计算差集 a = \[1, 2, 3, 4\] b = \[2, 3, 4, 5\] diff = list(set(a) - set(b)) print("差集:", diff) # 计算交集 intersection = list(set(a).intersection(set(b))) print("交集:", intersection) # 计算并集 union = list(set(a).union(set(b))) print("并集:", union) ``` 输出结果为: ``` 差集: \[1\] 交集: \[2, 3, 4\] 并集: \[1, 2, 3, 4, 5\] ``` 希望这个回答对你有帮助! #### 引用[.reference_title] - *1* *2* [Python快速找出两个列表差集并集交集](https://blog.csdn.net/Leexin_love_Ling/article/details/121356884)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Python 交集并集差集](https://blog.csdn.net/weixin_43846270/article/details/120961000)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值