题意
Description
有 n n n 种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是 n n n 种邮票中的哪一种是等概率的,概率均为 1 n \frac{1}{n} n1。但是由于凡凡也很喜欢邮票,所以皮皮购买第k 张邮票需要支付 k k k 元钱。现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望。
Format
Input
一行,一个数字 n n n
Output
要付出多少钱. 保留二位小数
Samples
输入数据 1
3
输出数据 1
21.25
1 ≤ n ≤ 1 0 4 1\leq n\leq 10^4 1≤n≤104
思路
这一道题目堪称牛逼,需要数学功底。
设 P ( x , i ) P(x,i) P(x,i) 表示买 x x x 次能从 i i i 种买到 n n n 种的概率
设 f i f_i fi 表示现在有 i i i 张,买到 n n n 张的期望。
那么有:
f i = ∑ x = 0 ∞ x × P ( x , i ) ⇔ f i = n − i n × f i + 1 + i n × f i + 1 ⇔ n × f i = ( n − i ) × f i + 1 + i × f i + n ⇔ ( n − i ) × f i = ( n − i ) × f i + 1 + n ⇔ f i = f i + 1 + n n − i . f_i=\sum_{x=0}^\infty x\times P(x,i)\\ \begin{align} &\Leftrightarrow f_i=\frac{n-i}{n}\times f_{i +1} + \frac{i}{n}\times f_i+1\\ &\Leftrightarrow n\times f_i=(n-i)\times f_{i+1}+i\times f_i+n\\ &\Leftrightarrow (n-i)\times f_i=(n-i)\times f_{i+1}+n\\ &\Leftrightarrow f_i=f_{i+1}+\frac{n}{n-i}. \end{align} fi=x=0∑∞x×P(x,i)⇔fi=nn−i×fi+1+ni×fi+1⇔n×fi=(n−i)×fi+1+i×fi+n⇔(n−i)×fi=(n−i)×fi+1+n⇔fi=fi+1+n−in.<