1.原理
每一趟排序,先选出key,将比key小的值排左边,比key大的值排右边,然后在子区间上重复此操作。
如图: 定义key为第一个数,定义L和R两个值记录下标,R先走找到比key小的值停下,然后L再走找到比key大的值停下,然后交换L和R的值,重复过程直到L与R相遇,将key交换到相遇位置处。使得数组中的值:{小于等于key的值} key {大于等于key的值}。
2.代码实现(递归版)
2.1首先写下单趟排序。
为什么要R先走呢?因为R先走在比key小的位置停下来了,L没有找到比key大的元素就会和R相遇,相遇位置R停下的位置是比key小的位置。
//begain、end分别为排序子区间的第一个元素的下标、最后一个元素的下标
int left = begain, right = end, keyi = begain;
while (left < right)
{
//right先走确保最后left和right相遇时元素必定小于keyi
while (left < right && a[right] >= a[keyi])
{
right--;
}
while (left < right && a[left] <= a[keyi])
{
left++;
}
Swap(&a[left], &a[right]);
}
//使最后keyi左边的元素都小于它,右边的元素都大于它
Swap(&a[right], &a[keyi]);
2.2分为子问题
当单趟排完之后,我们就继续排[begain,keyi-1] 和 [keyi+1,end]两个子区间。我们可以用递归实现,那么最小子问题(返回的条件)是什么呢?即传入的begain >= end时传入的区间的元素数小于一个时返回。
if (begain >= end)
{
return;
}
2.3参考代码
//快排
//Hoare版本
void QuickSort(int* a, int begain, int end) {
if (begain >= end)
{
return;
}
int left = begain, right = end, keyi = begain;
while (left < right)
{
//right先走确保最后left和right相遇时元素必定小于keyi
while (left < right && a[right] >= a[keyi])
{
right--;
}
while (left < right && a[left] <= a[keyi])
{
left++;
}
Swap(&a[left], &a[right]);
}
//使最后keyi左边的元素都小于它,右边的元素都大于它
Swap(&a[right], &a[keyi]);
keyi = left;
//运用搜索二叉树的思想,递归实现
//[begain,keyi-1] keyi [keyi+1,end]
QuickSort(a, begain, keyi - 1);//keyi的左区间
QuickSort(a, keyi+1, end);//keyi的右区间
}
3.拓展
3.1前后指针法快排
//快排快慢指针法
void QuickSort2(int* a, int begain, int end) {
if (begain >= end)
{
return;
}
int prev = begain, cur = begain + 1, keyi = begain;
while (cur <= end)
{
//a[cur] > a[keyi]时只有cur向前走,使得prev与cur之间都是比 a[keyi]大的元素
if (a[cur] > a[keyi])
{
cur++;
}
//a[cur] > a[keyi]时,prev先++,若++后的prev!= cur则Swap,使得prev与cur之间都是比 a[keyi]大的元素
else
{
if (++prev != cur)
{
Swap(&a[prev], &a[cur]);
}
cur++;
}
}
//使最后keyi左边的元素都小于它,右边的元素都大于它
Swap(&a[prev], &a[keyi]);
//[begain,keyi-1] keyi [keyi+1,end]
//运用搜索二叉树的思想,递归实现
QuickSort2(a, begain, prev - 1);//keyi的左区间
QuickSort2(a, prev + 1, end);//keyi的右区间
}
3.2非递归版本快排
要模拟递归,最重要的是储存下一次排序的区间,然后取用直到所以区间都排完结束。
//非递归法快排
void QuickSortNonR(int* a, int begain, int end)
{
//用栈存储每趟排序的区间
ST stack;
STInit(&stack);
//先取begain,后取end,故压栈时要先压end,再压begain
STPush(&stack, end);
STPush(&stack, begain);
//若栈存在数据说明没有将所有区排序完
while (!STEmpty(&stack))
{
//取数据
int left = STTop(&stack);
STPop(&stack);
int right = STTop(&stack);
STPop(&stack);
//储存排序区间,便于将子排序区间压栈
int begain = left;
int end = right;
int keyi = left;
while (left < right)
{
while (left < right && a[right] >= a[keyi])
{
//右指针向左移动,找到小于a[keyi]的数据停下
right--;
}
while (left < right && a[left] <= a[keyi])
{
//左指针向右移动,找到大于a[keyi]的数据停下
left++;
}
//此时a[right] >= a[keyi],a[left] <= a[keyi],交换可助推最后keyi左边的元素都小于它,右边的元素都大于它
Swap(&a[left], &a[right]);
}
//左右指针相遇后交换a[left], a[keyi],使keyi左边的元素都小于它,右边的元素都大于它
Swap(&a[left], &a[keyi]);
//[begain,keyi-1] keyi [keyi+1,end]
if (begain < keyi - 1)
{
//先取begain,后取end,故压栈时要先压end,再压begain
STPush(&stack, keyi - 1);
STPush(&stack, begain);
}
if (keyi + 1 < end)
{
//先取begain,后取end,故压栈时要先压end,再压begain
STPush(&stack, end);
STPush(&stack, keyi + 1);
}
}
}