自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 思维题杂录

(1)思考:先看a自身是不是495的倍数,不是则考虑在a的后面添一个自然数,即相当于将a*10再加上该数。设余数为r,再求m = 495 - r,此时的m表示的是a*10离成为495倍数还差的多少,即(a*10 + m)就是离a*10最近的那个495的倍数。如果m<10,则只需要在a的末尾添一个m即可(因为a*10,所以在a的末尾只能添一个自然数)。如果不可,则a*100,再由上述操作求得m,如果m<100(这里m一定≥10,可以思考一下why),则m为所求(a*100,则a后可以添两个自然数)。

2024-03-19 21:11:20 248

原创 献给初学者的C语言复习自查

声明包含两种:①定义性声明(defining declaration) ————“定义”②引用性声明(referencing declaration)————“狭义上的声明”定义性声明如int a,在声明a的同时还要要给a分配空间。引用性声明如extern int a,只是扩展了别处定义的变量a的作用域,并不需要给a额外分配空间。一般我们将不需要分配空间的声明称之为“声明”,这是狭义上的声明。将需要分配空间的的声明称之为“定义”,所以定义是声明的一种特例。

2023-11-22 17:12:35 65

原创 2023哈理工蓝桥杯模拟练习赛——猴王Kiki分桃

(2)如果没有横跨,说明[L,r]区间长度小于n,且在两相邻n倍数[c*n,(c+1)*n]的区间内,这时Kiki得到的奖励桃数量与k的取值成正相关,k越大,奖励桃数量越多,而k属于[L,r],所以当k=r时,Kiki得到的奖励桃最多,为:L%n+r-L。(1)如果前者≤后者,说明kiki摘了至少应该摘的桃数l以外,即使继续摘桃,继续摘的这些桃加上L个桃被分过后剩下的桃子,加起来的“最多”数量(即k=r时)也≤n-1(或者<n个)个,所以全都归kiki。此时Kiki得到的奖励桃最多为(L%n+r-l)个。

2023-04-08 17:44:13 132 1

原创 基础算法——快速幂

这实际上是用到了类似快速幂的算法,其思想就是在得到的数基础上平方,平方后数的幂会×2。此算法的时间复杂度为0(1+log以2为底的n)向下取整,因为是从2^0开始,而log是从2^1开始,所以同样的数,快速幂会多一次运算。于是:1个3^2^2 * 0个3^2^1 * 1个3^2^0 =3^5。将余数1留在第一位,为2^0 * 1。将余数0留在第二位,为2^1 * 0。这里1不大于进制单位2,所以不进位,1留在第三位,为2^2 *1。对应为: 2^2 2^1 2^0。

2023-03-29 21:09:00 80

原创 蓝桥杯题目:切面条(附详细思路)

每次对折除了叠加面条外,还有一个作用就是将未对折前进行切割能得到的面条移动到左端,如下图圆圈内的部分其实就是矩形内的部分,这也佐证了对折后切一刀是在对折前切一刀的基础上加了中间叠加的面条数。切两刀与切一刀的区别就是前者会得到中间的面条,将两刀中间的面条拿走,剩下部分与切一刀是一样的。对折n次叠加面条数为:2^n 所得:2+1+2……对折1次叠加面条数为:2 所得:2+1 再对折后切能额外得到:2。对折2次叠加面条数为:4 所得:2+1+2 再对折后切能额外得到:4。

2023-03-28 21:11:07 804

原创 分解质因数(附数学原理)

2.通过这一种方式得到的因数都是质因数的原因是:假设有几个按大小排列的质因数 x, y,z,从最小质数2开始(最小质数之前没有合数,根据合数与质数定义可知),当一直轮到i =x时,通过上面的操作,x与y之间所有的合数都不可能被a整除,因为x与y之间的合数一定能被分解成x或x以前的质数之积。当我们不断地对a除以2,最终a=189,此时2不再是a的因数,根据推论,4、6、14、42等数也不再是a的因数。i的平方=n,进入循环分解,循环结束以后,n=1。i的平方>n,n此时一定为一个质数。i的平方

2023-03-26 20:45:51 2449 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除