算法——线性回归

简介:个人学习分享,如有错误,欢迎批评指正

一、什么是线性回归

线性回归(Linear Regression)是一种基础且常用的机器学习算法,主要用于预测连续型变量。它通过构建一个线性关系模型来描述输入变量与输出变量之间的关系。
线性回归旨在找到一个最佳拟合直线,使得输入特征和输出目标之间的误差最小。具体而言,它通过求解一组参数来建立输入变量 𝑥和输出变量 𝑦之间的线性关系。常见的线性回归模型包括一元线性回归和多元线性回归。

回归算法与分类算法的区别
回归算法是相对分类算法而言的,与我们想要预测的目标变量y的值类型有关。当任务是预测一个连续值的话,那这个任务就是回归,是离散值的话就是分类。如果目标变量y是分类型变量,如预测用户的性别(男、女),预测月季花的颜色(红、白、黄……),预测是否中刮刮乐(是、否),那我们就需要用分类算法去拟合训练数据并做出预测;如果y是连续型变量,如预测用户的收入(4千,2万,10万……),预测员工的通勤距离(500m,1km,2万里……),预测中刮刮乐的概率(1%,50%,99%……),我们则需要用回归模型。

有时分类问题也可以转化为回归问题,例如刚刚举例的中刮刮乐预测,我们可以用回归模型先预测出中刮刮乐的概率,然后再给定一个阈值,例如50%,概率值在50%以下的人划为没有刮中,50%以上则认为刮中了。
这种分类型问题的回归算法预测,最常用的就是逻辑回归。

二、一元线性回归

一元线性回归模型的数学表达式为:

y = β 0 + β 1 x + ϵ y = \beta_0 + \beta_1 x + \epsilon y=β0+β1x+ϵ

其中, y y y 是预测值, β 0 \beta_0 β0 是截距, β 1 \beta_1 β1 是斜率, x x x 是输入特征, ϵ \epsilon ϵ 是误差项。

另外, y = β 0 + β 1 x y = \beta_0 + \beta_1 x y=β0+β1x表示当给定参数 β 0 \beta_0 β0 β 1 \beta_1 β1 的时候,画在坐标图内是一条直线(这就是“线性”的含义)。

当我们只用一个x来预测 y,就是一元线性回归,也就是在找一个直线来拟合数据。比如,我有一组数据画出来的散点图,横坐标代表广告投入金额,纵坐标代表销售量,线性回归就是要找一条直线,并且让这条直线尽可能地拟合图中的数据点。线性回归无非就是在 N 维空间中找一个形式像直线方程一样的函数来拟合数据而已。
在这里插入图片描述
这里我们得到的拟合方程是 y = 0.0512 x + 7.1884 y = 0.0512x + 7.1884 y=0.0512x+7.1884,此时当我们获得一个新的广告投入金额后,我们就可以用这个方程预测出大概的销售量。

数学理论的世界是精确的,譬如当 x = 0 x = 0 x=0 就能得到唯一的 y ^ = 7.1884 \hat{y} = 7.1884 y^=7.1884(y 上面加一个小帽子 ^ \hat{} ^,表示这个 y ^ \hat{y} y^不是我们真实观测到的,而是估计值)。但现实世界中的数据就像这个散点图,我们只是在可能的线性关系中寻找规律,用数学的模型去拟合现实的数据,这就是统计。统计不像数学那么精确,统计的世界不是非黑即白的,它有“灰色地带”,但是统计会将理论与实际间的差别表示出来,也就是“误差”

因此,统计世界中的公式会有一个小尾巴 ϵ \epsilon ϵ,用来代表误差

三、多元线性回归:

多元线性回归模型扩展了一元线性回归,包含多个输入特征。其数学表达式为:

y = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n + ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + \epsilon y=β0+β1x1+β2x2++βnxn+ϵ

其中, x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn 是多个输入特征。

四、线性回归的数学推导

1.损失函数

那既然是用直线拟合散点,为什么最终得到的直线是 y = 0.0512 x + 7.1884 y = 0.0512x + 7.1884 y=0.0512x+7.1884,而不是下图中的 y = 0.0624 x + 5 y = 0.0624x + 5 y=0.0624x+5呢?这两条线看起来都可以拟合这些数据啊?毕竟数据不是真的落在一条直线上,而是分布在直线周围,所以我们要找到一个评判标准,用于评价哪条直线才是最“合适”的。
在这里插入图片描述
我们先从误差说起。误差说白了就是真实值和预测值间的差值(也可以理解为差距、距离),用公式表示是:

ϵ = y − y ^ \mathbf{\epsilon} = \mathbf{y} - \hat{\mathbf{y}} ϵ=yy^

在这里插入图片描述
对于某个广告投入 x i x_i xi,我们有对应的实际销售量 y i y_i yi,和预测出来的销售量 y i ^ \hat{y_i} yi^(通过将 x i x_i xi代入公式 y = β 0 + β 1 x i y = \beta_0 + \beta_1 x_i y=β0+β1xi计算得到),计算 ϵ i = y i − y i ^ \epsilon_i = y_i - \hat{y_i} ϵi=yiyi^的值,再将其平方(为了消除负号),对于我们数据中的每个点如此计算一遍,再将所有的 ϵ i 2 \epsilon_i^2 ϵi2相加,就能计算出拟合的直线和实际之间的误差。

用公式表示就是:

Q = ∑ i = 1 n ( y i − y i ^ ) 2 = ∑ i = 1 n ( y i − ( β ^ 0 + β ^ 1 x i ) ) 2 Q = \sum_{i=1}^{n} (y_i - \hat{y_i})^2 = \sum_{i=1}^{n} \left( y_i - (\hat\beta_0 + \hat\beta_1 x_i) \right)^2 Q=i=1n(yiyi^)2=i=1n(yi(β^0+β^1xi))2

这个公式是残差平方和,即 SSE(Sum of Squares for Error),在机器学习中它是回归问题中最常用的损失函数。

损失函数是衡量回归模型误差的函数,也就是我们“直线”的评价标准。这个函数的值越小,说明直线越能拟合我们的数据。


假设我们有一组样本,建立了一个线性回归模型 f ( x ) f(x) f(x),其中一个样本 A A A是这样的:
公司投入了 x = 1000 x=1000 x=1000元做广告,销售量为 y = 60 y=60 y=60 f ( x = 1000 ) f(x=1000) f(x=1000)算出来是50,有-10的误差。

样本 B B B x = 2000 x=2000 x=2000,销售量为 y = 95 y=95 y=95 f ( x = 2000 ) = 100 f(x=2000)=100 f(x=2000)=100,误差为5。

样本 C C C x = 3000 x=3000 x=3000,销售量为 y = 150 y=150 y=150 f ( x = 2000 ) = 150 f(x=2000)=150 f(x=2000)=150,误差为0哦,没有误差~

要计算A、B、C的整体误差,因为有正有负,所以做个平方,都弄成正的后再相加,得到总误差,也就是平方损失,是125。

2.最小二乘法

β 0 \beta_0 β0 β 1 \beta_1 β1 的具体值又是怎么算出来的呢?

我们知道,两点确定一线,有两组 x x x y y y 的值,就能算出来 β 0 \beta_0 β0 β 1 \beta_1 β1。但是现在我们有很多点,且并不正好落在一条直线上,这么多点每点都能确定一条直线,这到底要怎么确定哪条直线呢?

当给出两条直线的方程,如 y = 0.0512 x + 7.1884 y = 0.0512x + 7.1884 y=0.0512x+7.1884 y = 0.0624 x + 5 y = 0.0624x + 5 y=0.0624x+5,我们知道怎么评价这两条中哪个更好,即用损失函数来评估。那么我们试试倒推一下?

给定一组样本观测值 x i , y i ( i = 1 , 2 , … , n ) x_i, y_i (i = 1, 2, \ldots, n) xi,yi(i=1,2,,n),要求回归函数尽可能拟合这组值。普通最小二乘法给出的判断标准是:误差平方和的值达到最小。

我们再来看一下残差平方和的公式:

Q = ∑ i = 1 n ( y i − y i ^ ) 2 = ∑ i = 1 n ( y i − ( β ^ 0 + β ^ 1 x i ) ) 2 Q = \sum_{i=1}^{n} (y_i - \hat{y_i})^2 = \sum_{i=1}^{n} \left( y_i - (\hat\beta_0 + \hat\beta_1 x_i) \right)^2 Q=i=1n(yiyi^)2=i=1n(yi(β^0+β^1xi))2

这个公式是一个二次方程,我们知道一元二次方程差不多长下图这样:
在这里插入图片描述

上面公式中 β ^ 0 \hat\beta_0 β^0 β ^ 1 \hat\beta_1 β^1未知,有两个未知参数的二次方程,画出来是一个三维空间中的图像,类似下面:
在这里插入图片描述
这类函数在数学中叫做凸函数,还记得微积分知识的话,就知道导数为0时,Q取最小值,因此我们分别对 β ^ 0 \hat\beta_0 β^0 β ^ 1 \hat\beta_1 β^1求偏导并令其为0:
∂ Q ∂ β 0 = 2 ∑ i = 1 n ( y i − β 0 ^ − β 1 ^ x i ) = 0 \frac{\partial Q}{\partial \beta_0} = 2 \sum_{i=1}^{n} \left( y_i - \hat{\beta_0} - \hat{\beta_1} x_i \right) = 0 β0Q=2i=1n(yiβ0^β1^xi)=0

∂ Q ∂ β 1 = 2 ∑ i = 1 n ( y i − β 0 ^ − β 1 ^ x i ) x i = 0 \frac{\partial Q}{\partial \beta_1} = 2 \sum_{i=1}^{n} \left( y_i - \hat{\beta_0} - \hat{\beta_1} x_i \right) x_i = 0 β1Q=2i=1n(yiβ0^β1^xi)xi=0
在这里插入图片描述
x i , y i ( i = 1 , 2 , … n ) x_i,y_i(i=1,2,…n) xiyii=1,2,n都是已知的,全部代入上面两个式子,就可求得 β ^ 0 \hat\beta_0 β^0 β ^ 1 \hat\beta_1 β^1的值啦。这就是最小二乘法,“二乘”是平方的意思

线性回归的定义,是利用最小二乘函数对一个或多个自变量之间关系进行建模的方法。

以上举的例子是一维的例子( x x x只有一个),如果有两个特征,就是二元线性回归,要拟合的就是二维空间中的一个平面。如果有多个特征,那就是多元线性回归:

最后再提醒一点,做线性回归,不要忘了前提假设是 y y y x x x呈线性关系,如果两者不是线性关系,就要选用其他的模型啦。

五、python代码示例

调包

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 生成模拟数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算误差
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

# 可视化结果
plt.scatter(X, y, color='blue', label='Data Points')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression')
plt.legend()
plt.show()

不调包

import numpy as np
import matplotlib.pyplot as plt

# 生成模拟数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1) * 50  # 房屋面积在 0 到 100 平方米之间
y = 4 + 3 * X + np.random.randn(100, 1) * 10  # 房价大约在 4 + 3 * 面积,带有一些随机噪声

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]  # 在X矩阵的左侧添加一列1

# 梯度下降法参数
learning_rate = 0.01
n_iterations = 1000
m = 100

# 初始化随机的权重参数
theta = np.random.randn(2, 1)

# 梯度下降法
for iteration in range(n_iterations):
    gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - learning_rate * gradients

# 输出结果
print(f"Intercept (beta_0): {theta[0][0]}")
print(f"Coefficient (beta_1): {theta[1][0]}")

# 预测
X_new = np.array([[0], [100]])  # 新的输入数据
X_new_b = np.c_[np.ones((2, 1)), X_new]  # 添加偏置项
y_predict = X_new_b.dot(theta)  # 预测结果

# 可视化
plt.scatter(X, y, color='blue', label='Data Points')
plt.plot(X_new, y_predict, color='red', linewidth=2, label='Regression Line')
plt.xlabel('House Size (sqm)')
plt.ylabel('House Price (10,000 yuan)')
plt.title('Linear Regression for House Price Prediction')
plt.legend()
plt.show()

六、总结

优点

  1. 简单易懂:
    线性回归模型的原理和数学公式非常简单,易于理解和实现。
    结果具有良好的可解释性,模型参数(截距和系数)直观地反映了输入特征与输出目标之间的关系。
  2. 计算效率高:
    由于模型简单,线性回归在训练和预测时计算效率非常高,适合大规模数据集的快速建模和预测。
  3. 适用于线性关系:
    在线性关系较强的数据集上,线性回归能很好地捕捉数据特征并进行准确预测。
  4. 少量参数调优:
    线性回归无需大量的参数调优,主要关注模型的截距和系数。
    不需要复杂的模型选择和超参数调整。
  5. 适用于小数据集
    在样本数量较少的情况下,线性回归依然可以有效地进行建模和预测。

缺点

  1. 假设严格:
    线性回归要求输入特征与输出目标之间存在线性关系,但现实数据往往不完全满足这一假设。
    需要满足正态性、同方差性、独立性等假设条件,否则模型性能可能受到影响。
  2. 对异常值敏感
    线性回归对异常值非常敏感,异常值可能对模型的拟合结果产生较大影响,导致模型偏差较大。
  3. 无法捕捉复杂关系:
    线性回归只能捕捉线性关系,对于非线性关系的特征无法有效建模,导致在处理复杂数据时性能不足。
  4. 特征独立性要求:
    线性回归要求特征之间独立,若存在多重共线性,会导致模型不稳定,系数估计不准确。
  5. 过拟合风险:
    在特征数量较多且样本数量较少的情况下,线性回归容易产生过拟合问题,导致模型在训练集上表现良好,但在测试集上表现不佳。

线性回归作为一种经典的预测模型,具有简单易懂、计算效率高等优点,适用于特定场景和数据特征。然而,它也存在假设严格、对异常值敏感、无法捕捉复杂关系等局限性。在实际应用中,需要根据具体情况选择合适的模型,并结合数据预处理和特征工程等方法来提升模型性能。

参考文献:
线性回归详解

结~~~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值