LeetCode-198. 打家劫舍 C/C++实现 超详细思路及过程[M]

在这里插入图片描述

题目描述

198. 打家劫舍
难度:中等
相关标签:动态规划、数组

提示
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

运行示例
示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。

提示
1 <= nums.length <= 100
0 <= nums[i] <= 400

题目分析与实现

通过查看这一道题目,我们可以发现,判断当前房屋可不可以偷,决定于上一个房子是否被偷。之前的决策对当前决策产生影响,因此这道题很可能是一道动态规划问题。

大概知道思路之后,我们可以先确定初始几个数值,也就是初始状态。以[2,7,9,3,1]为例,在偷第一个房子的时候,我们可以获得2。在偷第二个房子的时候,由于我们不能偷连续的两个房子,也就是不能第一个和第二个房子一起被偷,那么我们就要比较一下第一个房子更值钱,还是第二个房子更值钱了。因而可以得到 当前能获得的最大金额 = max(第一个房子的价值,第二个房子的价值)。因此,我们偷到第二个房子的时候,可以获得的最大金额数为7。

在这里插入图片描述
确定完初始状态后,我们就要考虑状态转移方程了,其实就是找规律了。这里我们依然以[2,7,9,3,1]为例。在偷盗第三个房子的时候,我们不能偷第二个房子,但我们能偷第一个房子。因此,可以得到 第三个房屋能得到的最大金额 = max((第一个房子价值 + 第三个房子价值) , 第二个房子价值)

按照动态规划问题的常规套路,此时我们要创建一个dp数组,一般这个dp数组的长度要≥输入数组的长度。这里我们创建一个长度为5的dp数组,因为第一个房子能偷到的最大金额为2,所以dp[0]=2;第二个房子能偷到的最大金额为7,所以dp[1]=7;根据上面的公式,我们可以得到第三个房子能偷到的最大金额为11,所以dp[2]=11。
在这里插入图片描述
分析第四个房子的思路和第三个房子的思路是一样的,即 第四个房屋能得到的最大金额 = max((第二个房子处得到的价值 + 第三个房子价值) , 第三个房子处得到的价值)。这里为什么不是第三个房子的价值,而是第三个房子处得到的价值呢?因为我们是一个累计的过程,第三个房子处得到的价值是累计了一号房子和三号房子的结果的。因而,dp[3]=max(dp[1]+nums[4] , dp[2])。

经过上面的一波分析,我们可以得到,dp[i] = max(dp[i-1], dp[i - 2]+nums[i])。接下来我们来看看实现代码吧。

C语言

int rob(int* nums, int numsSize){
	//如果numsSize为1时,可能数组越界,需要特殊考虑
    if(numsSize == 1)
        return nums[0];
    int* dp = (int*)malloc(sizeof(int) * numsSize);
    dp[0] = nums[0];
    dp[1] = nums[1] > nums[0] ? nums[1] : nums[0];
    for(int i = 2; i < numsSize; i++)
        dp[i] = dp[i - 1] > dp[i - 2] + nums[i] ? dp[i - 1] : dp[i - 2] + nums[i];
    return dp[numsSize - 1];
}

C++

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n == 1)
            return nums[0];
        vector<int>dp(n);
        dp[0] = nums[0];
        dp[1] = nums[1] > nums[0] ? nums[1] : nums[0];
        for(int i = 2; i < n; i++)
            dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
        return dp[n - 1];
    }
};

上面有三四行代码是在特殊处理0、1下标位置。下面的方法,通过多开辟2个位置的空间,并将这两个位置置为0,此时就不再需要特殊考虑0、1下标了。
C语言

int rob(int* nums, int numsSize){
    int* dp = (int*)malloc(sizeof(int) * (numsSize + 2));
    memset(dp, 0, sizeof(int) * (numsSize + 2));
    for(int i = 2; i < numsSize + 2; i++)
        dp[i] = dp[i - 1] > dp[i - 2] + nums[i - 2] ? dp[i - 1] : dp[i - 2] + nums[i - 2];
    return dp[numsSize + 1];
}

C++

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        vector<int>dp(n + 2);
        for(int i = 2; i < n + 2; i++)
            dp[i] = dp[i - 1] > dp[i - 2] + nums[i - 2] ? dp[i - 1] : dp[i - 2] + nums[i - 2];
        return dp[n + 1];
    }
};

为什么要多开两个位置的空间呢?为什么要初始化为0呢?

在这里插入图片描述
在动态规划问题中,可以通过多开辟几个元素的空间,以此简化初始化操作。此处,i=0代入循环遍历语句 * “dp[i] = dp[i - 1] > dp[i - 2] + nums[i - 2] ? dp[i - 1] : dp[i - 2] + nums[i - 2];” * 时,因为该语句会向前访问两个元素,多开辟这两个元素就不用再担心数组越界了。

初始化操作要遵循不影响结果的元素,上述初始化为0时恰好不影响dp[0],dp[1]的结果。具体初始化为什么,还需要具体问题具体分析。

上面就是今天分享的所有内容啦!下一文章见!在这里插入图片描述
🎇有更优秀的算法,欢迎在评论区讨论!!

  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值