- 博客(3)
- 收藏
- 关注
原创 基于 Transformer 和 PyTorch 的日中机器翻译模型
在自然语言处理领域,机器翻译是一项具有挑战性的任务,它要求模型不仅要理解源语言文本的含义,还要能够准确地将其转换成目标语言。近年来,Transformer模型凭借其在处理序列数据方面的优势,已经成为机器翻译领域的主流架构之一。本实验旨在探索基于Transformer和PyTorch框架的日中机器翻译模型,通过实现Seq2SeqTransformer模型,我们能够深入理解Transformer的核心原理及其在机器翻译中的应用。
2024-06-26 20:35:47 867
原创 自然语言处理:机器翻译
在构建一个高效且准确的翻译系统时,关键在于设计和实现一个强大的神经网络架构,该架构能够处理复杂的语言转换任务。编码器-解码器架构: 翻译系统的核心通常由编码器和解码器组成。编码器负责读取源语言的输入文本,并通过神经网络层提取特征表示。这些特征随后被传递给解码器,解码器逐步生成目标语言的输出序列。在Seq2Seq模型中,编码器和解码器通常由LSTM单元或GRU单元构成,它们能够处理序列数据并记忆长距离依赖关系。注意力机制: 注意力机制是一种让解码器在生成每个词时能够“关注”编码器输出的特定部分的技术。
2024-06-25 20:30:55 1297
原创 自然语言处理:前馈网络
这篇文章将探索和使用两种前馈神经网络:多层感知器和卷积神经网络。并将它们应用到自然语言处理的实际问题上,实现对姓氏的分类。
2024-06-15 11:10:56 886 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人