方法一:随机增量法:
分析:用最小的圆覆盖住所有的点:随机增量法复杂度是O(n);
2、算法及原理算法介绍:我们本次算法的设计是基于这样一个简单直观的性质:
在既定的给定点条件下,如果引入一张新的半平面,只要此前的最优解顶点(即唯一确定最小包围圆的几个关键顶点)能够包含于其中,则不必对此最优解进行修改,亦即此亦为新点集的最优解;否则,新的最优解顶点必然位于这个新的半空间的边界上。定理可以通过反证法证明。于是,基于此性质,我们便可得到一个类似于线性规划算法的随机增量式算法。定义Di为相对于pi的最小包围圆。此算法实现的关键在于对于pi∉Di-1时的处理。显然,如果pi∈Di-1,则Di= Di-1;否则,需要对Di另外更新。而且,Di的组成必然包含了pi;因此,此种情况下的最小包围圆是过pi点且覆盖点集{ p1 ,p2 ,p3 ……pi-1}的最小包围圆。则仿照上述处理的思路,Di={ p1 ,pi },逐个判断点集{ p2 ,p3 ……pi-1 },如果存在pj∉ Di,则Di={pj,pi }。同时,再依次对点集{ p1 ,p2 ,p3 ……pj-1 }判断是否满足pk∈Di,若有不满足,则Di={pk ,pj,pi }。由于,三点唯一地确定一个圆,故而