鸿蒙开发进阶(HarmonyOS )签名验签介绍及算法规格

 鸿蒙NEXT开发实战往期必看文章:

一分钟了解”纯血版!鸿蒙HarmonyOS Next应用开发!

“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线!(从零基础入门到精通)

HarmonyOS NEXT应用开发案例实践总结合(持续更新......)

HarmonyOS NEXT应用开发性能优化实践总结(持续更新......)


当需要判断接收的数据是否被篡改、数据是否为指定对象发送的数据时,可以使用签名验签操作。

接下来将说明系统目前支持的算法及其对应的规格。

说明

当前使用C/C++的方式开发只支持验签,不支持签名。

RSA

算法库框架目前提供了两种RSA签名验签的填充模式:

  • PKCS1:即RFC3447规范中的RSAES-PKCS1-V1_5模式,对应OpenSSL中的RSA_PKCS1_PADDING。

    使用该模式时需要设置摘要(md),摘要算法输出的长度需要小于RSA钥模(即RSA模数n的字节长度)。

  • PSS: 即RFC3447规范中的RSASSA-PSS模式,对应OpenSSL中的RSA_PKCS1_PSS_PADDING。

    使用该模式时需要设置两个摘要(md和mgf1_md),且md和mgf1_md长度之和需要小于RSA的钥模。

    此模式还可额外设置盐长度saltLen,并用于获取PSS的相关参数。(单位:字节)

    PSS的相关参数说明
    md摘要算法。
    mgf掩码生成算法,目前仅支持MGF1。
    mgf1_mdMGF1算法中使用的摘要算法。
    saltLen盐长度。(单位:字节)
    trailer_field用于编码操作的整数,只支持为1。

注意

使用同步接口生成RSA2048、RSA3072、RSA4096、RSA8192非对称密钥或者明文长度超过2048会导致耗时增加。

由于系统对主线程有时间限制,耗时较长会导致失败,建议开发者在生成位数较大的密钥时,使用对应的异步接口,或是使用多线程并发能力进行开发。

填充模式为PKCS1

以字符串参数完成RSA签名验签,具体的“字符串参数”由“非对称密钥类型”、“填充模式 PKCS1”和“摘要”使用符号“|”拼接而成,用于在创建非对称签名验签实例时,指定非对称签名验签算法规格。

如表所示,各取值范围(即[]中的内容)中,只能选取一项完成字符串拼接。举例说明,当需要非对称密钥类型为RSA512、填充模式为PKCS1、摘要算法为MD5的密钥时,其字符串参数为"RSA512|PKCS1|MD5"。

说明

RSA签名验签时,摘要算法输出的长度,需要小于RSA的钥模。如RSA密钥为512位时,不支持SHA512。

非对称密钥类型填充模式摘要算法API版本
RSA512PKCS1[MD5|SHA1|SHA224|SHA256]9+
RSA768PKCS1[MD5|SHA1|SHA224|SHA256|SHA384|SHA512]9+
RSA1024PKCS1[MD5|SHA1|SHA224|SHA256|SHA384|SHA512]9+
RSA2048PKCS1[MD5|SHA1|SHA224|SHA256|SHA384|SHA512]9+
RSA3072PKCS1[MD5|SHA1|SHA224|SHA256|SHA384|SHA512]9+
RSA4096PKCS1[MD5|SHA1|SHA224|SHA256|SHA384|SHA512]9+
RSA8192PKCS1[MD5|SHA1|SHA224|SHA256|SHA384|SHA512]9+
RSAPKCS1符合长度要求的摘要算法10+

如表中最后一行所示,为了兼容由密钥参数生成的密钥,RSA签名验签参数输入密钥类型时支持不带长度,签名验签运算取决于实际输入的密钥长度。

填充模式为PSS

以字符串参数完成RSA签名验签,具体的“字符串参数”由“非对称密钥类型”、“填充模式 PSS”、“摘要”和“掩码摘要”使用符号“|”拼接而成,用于在创建非对称签名验签实例时,指定非对称签名验签算法规格。

如表所示,各取值范围(即[]中的内容)中,只能选取一项完成字符串拼接。举例说明,当需要非对称密钥类型为RSA2048、填充模式为PSS、摘要算法为SHA256、掩码摘要为MGF1_SHA256的密钥时,其字符串参数为"RSA2048|PSS|SHA256|MGF1_SHA256"。

说明

RSA签名验签时,对于PSS模式,md和mgf1_md长度之和需要小于RSA的钥模。如RSA密钥为512位时,无法支持md和mgf1_md同时为SHA256。

非对称密钥类型填充模式摘要掩码摘要API版本
RSA512PSSMD5[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256]9+
RSA512PSSSHA1[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256]9+
RSA512PSSSHA224[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256]9+
RSA512PSSSHA256[MGF1_MD5|MGF1_SHA1|MGF1_SHA224]9+
RSA768PSSMD5[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA768PSSSHA1[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA768PSSSHA224[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA768PSSSHA256[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384]9+
RSA768PSSSHA384[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256]9+
RSA768PSSSHA512[MGF1_MD5|MGF1_SHA1|MGF1_SHA224]9+
RSA1024PSSMD5[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA1024PSSSHA1[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA1024PSSSHA224[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA1024PSSSHA256[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA1024PSSSHA384[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA1024PSSSHA512[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384]9+
RSA2048PSSMD5[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA2048PSSSHA1[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA2048PSSSHA224[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA2048PSSSHA256[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA2048PSSSHA384[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA2048PSSSHA512[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA3072PSSMD5[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA3072PSSSHA1[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA3072PSSSHA224[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA3072PSSSHA256[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA3072PSSSHA384[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA3072PSSSHA512[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA4096PSSMD5[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA4096PSSSHA1[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA4096PSSSHA224[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA4096PSSSHA256[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA4096PSSSHA384[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA4096PSSSHA512[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA8192PSSMD5[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA8192PSSSHA1[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA8192PSSSHA224[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA8192PSSSHA256[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA8192PSSSHA384[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSA8192PSSSHA512[MGF1_MD5|MGF1_SHA1|MGF1_SHA224|MGF1_SHA256|MGF1_SHA384|MGF1_SHA512]9+
RSAPSS符合长度要求的摘要算法MGF1_符合长度要求的摘要算法10+

如表中最后一行所示,为了兼容由密钥参数生成的密钥,RSA签名验签参数输入密钥类型时支持不带长度,签名验签运算取决于实际输入的密钥长度。

获取/设置PSS填充模式的参数

当前支持RSA使用PSS填充模式时,获取、设置相关参数,“√”表示支持对获取或设置该参数。

PSS参数枚举值获取设置
mdPSS_MD_NAME_STR-
mgfPSS_MGF_NAME_STR-
mgf1_mdPSS_MGF1_MD_STR-
saltLenPSS_SALT_LEN_NUM
trailer_fieldPSS_TRAILER_FIELD_NUM-

签名模式为OnlySign

算法库框架目前提供了RSA签名不做摘要仅签名功能。

以字符串参数完成RSA签名,具体的“字符串参数”由“非对称密钥类型”、“填充模式”、“摘要”和“签名模式”使用符号“|”拼接而成,用于在创建非对称签名实例时,指定非对称签名算法规格。

如表所示,各取值范围(即[]中的内容)中,只能选取一项完成字符串拼接。举例说明,当需要非对称密钥类型为RSA2048、填充模式为PKCS1、摘要算法为SHA256、签名模式为OnlySign的密钥时,其字符串参数为"RSA2048|PKCS1|SHA256|OnlySign"。

说明

RSA仅签名时,对待签名数据有长度要求:

  1. PKCS1填充模式,NoHash不设置摘要算法,数据需要小于RSA密钥长度-11(PKCS1填充长度)。
  2. PKCS1填充模式,设置任意摘要算法,待签名的数据必须是对应的摘要数据。
  3. NoPadding不设置填充模式,NoHash不设置摘要算法,待签名的数据长度需要等于RSA密钥长度,且其数值小于RSA模数。
非对称密钥类型填充模式摘要算法签名模式API版本
RSA512PKCS1[NoHash|MD5|SHA1|SHA224|SHA256]OnlySign12+
RSA768PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]OnlySign12+
RSA1024PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]OnlySign12+
RSA2048PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]OnlySign12+
RSA3072PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]OnlySign12+
RSA4096PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]OnlySign12+
RSA8192PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]OnlySign12+
[RSA512|RSA768|RSA1024|RSA2048|RSA3072|RSA4096|RSA8192|RSA]NoPaddingNoHashOnlySign12+
RSAPKCS1符合长度要求的摘要算法OnlySign12+

如表中最后一行所示,为了兼容由密钥参数生成的密钥,RSA签名参数输入密钥类型时支持不带长度,签名运算取决于实际输入的密钥长度。

验签模式为Recover

算法库框架目前提供了RSA签名恢复原始数据功能。

以字符串参数完成RSA签名恢复,具体的“字符串参数”由“非对称密钥类型”、“填充模式”、“摘要”和“验签模式”使用符号“|”拼接而成,用于在创建非对称验签实例时,指定非对称验签算法规格。

如表所示,各取值范围(即[]中的内容)中,只能选取一项完成字符串拼接。举例说明,当需要非对称密钥类型为RSA2048、填充模式为PKCS1、摘要算法为SHA256、验签模式为Recover的密钥时,其字符串参数为"RSA2048|PKCS1|SHA256|Recover"。

非对称密钥类型填充模式摘要算法签名模式API版本
RSA512PKCS1[NoHash|MD5|SHA1|SHA224|SHA256]Recover12+
RSA768PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]Recover12+
RSA1024PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]Recover12+
RSA2048PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]Recover12+
RSA3072PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]Recover12+
RSA4096PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]Recover12+
RSA8192PKCS1[NoHash|MD5|SHA1|SHA224|SHA256|SHA384|SHA512]Recover12+
[RSA512|RSA768|RSA1024|RSA2048|RSA3072|RSA4096|RSA8192|RSA]NoPaddingNoHashRecover12+
RSAPKCS1符合长度要求的摘要算法Recover12+

如表中最后一行所示,为了兼容由密钥参数生成的密钥,RSA签名恢复参数输入密钥类型时支持不带长度,签名恢复运算取决于实际输入的密钥长度。

ECDSA

ECDSA(Elliptic Curve Digital Signature Algorithm,椭圆曲线数字签名算法)是基于椭圆曲线密码(ECC)的数字签名算法(DSA)。相比DLP(Discrete logarithm Problem,普通的离散对数问题)和IFP(integer factorization problem,大数分解问题),椭圆曲线密码的单位比特强度要高于其他公钥体制。

算法库框架提供了多种椭圆曲线及摘要算法组合的ECDSA签名验签能力。

以字符串参数完成ECDSA签名验签,具体的“字符串参数”由“非对称密钥类型”和“摘要”使用符号“|”拼接而成,用于在创建非对称签名验签实例时,指定非对称签名验签算法规格。

如表所示,各取值范围(即[]中的内容)中,只能选取一项完成字符串拼接。举例说明,当需要非对称密钥类型为ECC224、摘要算法为SHA256的密钥时,其字符串参数为"ECC224|SHA256"。

非对称密钥类型摘要API版本
ECC224[SHA1|SHA224|SHA256|SHA384|SHA512]9+
ECC256[SHA1|SHA224|SHA256|SHA384|SHA512]9+
ECC384[SHA1|SHA224|SHA256|SHA384|SHA512]9+
ECC521[SHA1|SHA224|SHA256|SHA384|SHA512]9+
ECC_BrainPoolP160r1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP160t1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP192r1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP192t1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP224r1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP224t1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP256r1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP256t1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP320r1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP320t1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP384r1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP384t1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP512r1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC_BrainPoolP512t1[SHA1|SHA224|SHA256|SHA384|SHA512]11+
ECC[SHA1|SHA224|SHA256|SHA384|SHA512]10+

如表中最后一行所示,为了兼容由密钥参数生成的密钥,ECDSA签名验签参数输入密钥类型时支持不指定长度和曲线,签名验签运算取决于实际输入的密钥。

DSA

DSA(Digital Signature Algorithm,数字签名算法)的安全性基于整数有限域离散对数问题的困难性,具有较好的兼容性和适用性。

以字符串参数完成DSA签名验签,具体的“字符串参数”由“非对称密钥类型”和“摘要”使用符号“|”拼接而成,用于在创建非对称签名验签实例时,指定非对称签名验签算法规格。

如表所示,各取值范围(即[]中的内容)中,只能选取一项完成字符串拼接。举例说明,当需要非对称密钥类型为DSA1024、摘要算法为SHA256的密钥时,其字符串参数为"DSA1024|SHA256"。

非对称密钥类型摘要API版本
DSA1024[NoHash|SHA1|SHA224|SHA256|SHA384|SHA512]10+
DSA2048[NoHash|SHA1|SHA224|SHA256|SHA384|SHA512]10+
DSA3072[NoHash|SHA1|SHA224|SHA256|SHA384|SHA512]10+
DSA[NoHash|SHA1|SHA224|SHA256|SHA384|SHA512]10+

如表中最后一行所示,为了兼容由密钥参数生成的密钥,DSA签名验签参数输入密钥类型时支持不带长度,签名验签运算取决于实际输入的密钥长度。

说明

当使用DSA算法并设置摘要算法为NoHash时,则不支持分段签名或分段验签。

SM2

SM2数字签名算法,是基于椭圆曲线的签名验签算法。

以字符串参数完成SM2签名验签,具体的“字符串参数”由“非对称密钥类型”和“摘要”使用符号“|”拼接而成,用于在创建非对称签名验签实例时,指定非对称签名验签算法规格。

当前SM2签名只支持SM3摘要。

非对称密钥类型摘要字符串参数API版本
SM2_256SM3SM2_256|SM310+
SM2SM3SM2|SM310+

如表中最后一行所示,为了兼容由密钥参数生成的密钥,SM2签名验签参数输入密钥类型时支持不带长度,签名验签运算取决于实际输入的密钥长度。

Ed25519

Ed25519是基于椭圆曲线的签名验签算法。

以字符串参数完成Ed25519签名验签,用于在创建非对称签名验签实例时,指定非对称签名验签算法规格。

非对称密钥类型字符串参数API版本
Ed25519Ed2551911+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值