鞍点介绍

鞍点定义

一个不是局部最小值的驻点(一阶导数为0的点)称为鞍点。

直观上看:目标函数在该点上的梯度(一阶导数)值为 0, 但从改点出发的一个方向(x或y方向)是函数的极大值点,而在另一个方向(y或x方向)是函数的极小值点。

从公式来说就是

f(x,y^*) \leq f(x^*,y^*) \leq f(x^*,y)

鞍点充分条件 

判断鞍点的一个充分条件是:函数在一阶导数为零处(驻点)的黑塞矩阵为不定矩阵。

不定矩阵

半正定矩阵: 所有特征值为非负。

半负定矩阵:所有特征值为非正。

不定矩阵:特征值有正有负。

例子

下面对函数 z^2 = x^2-y^2 的驻点(0,0)判断是否为鞍点。函数图像如下

 该函数在驻点(0,0,0)处的 Hessian 矩阵形式为\begin{bmatrix} 2 & 0\\ 0 & -2 \end{bmatrix},容易解出特征值一个为2,一个为-2(有正有负),显然是不定矩阵,所以该点是鞍点

参考

【最优化】鞍点介绍 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值