BF算法与KMP算法

最简单直观的模式匹配算法BF算法

int Index_BF(SString S,SString T,int pos)
{
i=pos;j=1;
while(i<=S.length&&j<=T.length)//两个串均未比较到末尾
{
if(S.ch[i]==T.ch[j]
{++i; ++j;}//继续比较后续指针

else
{ i=i-j+2;j=1;}//指针后退重新匹配

}
if(j>T.length) return i-T.length;
else return 0;
}

时间复杂度O(n*m)

BF算法思路直观简明,但每次匹配失败,主串的指针i总是要回溯到i-j+2位置,时间复杂度高。

 KMP算法进行了改进,时间复杂度变为O(n+m)

两个关于算法的理解视频

「天勤公开课」KMP算法易懂版_哔哩哔哩_bilibili

KMP算法之求next数组代码讲解_哔哩哔哩_bilibili

代码实现如下

int Index_KMP(SString S,SString T,int pos)
{
i=pos;j=1;
while(i<=S.length&&j<=T.length)
{
if(j==0||S.ch[i]==T.ch[j])
{
++i;++j;
}
else j=next[j];
}
if(j>T.length) return i-T.length;
else return 0;
}
void get_next(SString T,int next[])
{//求模式串T的next函数值并存入next数组
i=1;next[1]=0;j=0;
while(i<T.length)
{
if(j==0||T.ch[i]==T.ch[j])
{++i;++j;next[i]=j;}
else j=next[j];
}
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值