数据挖掘期中测验--简答题

本文介绍了数据挖掘的概念,包括其目的和步骤,强调了数据预处理、模型建立和训练的重要性。同时,讨论了有监督学习,如逻辑回归和朴素贝叶斯,以及支持向量机的原理。还展示了使用sklearn库进行线性回归模型的构建和调优过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么叫做数据挖掘?(数据、挖掘、和、数据挖掘的目的)

数据是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事务的未经加工的原始素材。

挖掘是进行深入开发,探求。

数据挖掘一般是从大量数据中通过算法搜索出隐藏其中的信息的过程,从大量的、不完全的、有噪声的、模糊的、随机的应用数据中,提取出潜在且有用的信息的过程,并且这个过程是自动的,通常与计算机有关,通过统计、联机分析处理、情报检索、机器学习等诸多方法实现,这是狭义的定义,还有一种广义的定义,认为数据挖掘就是一个完整的知识发现,包括数据清理、建模、评估等过程。

数据挖掘的目的:因为当前处于数据时代,数据量巨大,但有用信息很少,要想获得有用的信息,需对大量数据进行深层分析,对数据进行分析,尽可能自动化的简化和支持联机分析,达到把握趋势和模式,预测,以及求最优解的目的。

2.什么叫做有监督学习?(对比有监督和无监督)

监督学习:指我们设置所谓的“正确答案”去教会机器如何去学习,其训练数据由类别标记的输入向量x做为参数样本。利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。监督算法通过该样本进行分析利用这个模型对新样本进行预测,映射出新的实例。回归和分类均称为监督学习。

3.描述数据挖掘的策略?(目标函数最小、怎么对待过拟合、等等)

经验风险最小化,使用经验风险最小化策略可以求解最优化问题,比如线性回归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值