解法一:打暴力: 二分+模拟
很直接,不解释,肯定超时
代码:
#include<iostream>
#include<cstring>
using namespace std;
const int N = 100005;
int n,x;
int h[N];
int tmp[N];
int l,r,mid;
bool check(int mid)
{
if(mid>=n) return true;
memcpy(tmp,h,sizeof h);
int pos;
for(int k=1;k<=x;k++)
{
pos=0;
while(pos<n)
{
int head=pos;
for(int i=pos+mid;i>pos;i--)
{
//上岸了
if(i>=n)
{
pos=N;
break;
}
if(tmp[i]>0)
{
pos=i;
tmp[i]--;
break;
}
}
if(pos==head) return false;
}
pos=n;
while(pos>0)
{
int head=pos;
for(int i=pos-mid;i<pos;i++)
{
//上岸了
if(i<=0)
{
pos=-1;
break;
}
//找下一个着陆点
if(tmp[i]>0)
{
pos=i;
tmp[i]--;
break;
}
}
if(pos==head) return false;
}
}
return true;
}
int main()
{
cin>>n>>x;
for(int i=1;i<n;++i) cin>>h[i];
l=1,r=N;
while(l<r)
{
mid = l+r >> 1;
if(check(mid)) r=mid;
else l=mid+1;
}
cout<<l<<endl;
return 0;
}
解法二:二分+差分
思路:
假设青蛙跳跃的长度为y,那么对任意一个区间 [ l , l+y-1 ] , 高度和一定大于2x。
因为青蛙最多跳y格,所以无法直接跳过这个区间,要通过2x次,所以这段高度和一定大于2x。
如果每一段的高度和都大于2x,那么对于0~n的任意一点a,都有大于等于2x种途径跳上a,因为区间 [ a-y , a-1 ] 的高度和大于等于2x , 且这段区间的每个点都能跳上a (如果 a-y < 0 , 则可以直接从岸上跳到a )。
综上,只要保证任意一段长度为y的区间,高度和大于2x,青蛙跳跃能力为y时就可以上岸。
代码:
#include<iostream>
using namespace std;
const int N = 100005;
int n,x;
int h[N];
long long s[N];
int l,r,mid;
bool check(int mid)
{
for(int i=1;i+mid-1<n;++i)
{
int j=i+mid-1;
if(s[j]-s[i-1]<2*x) return false;
}
return true;
}
int main()
{
cin>>n>>x;
for(int i=1;i<n;++i)
{
cin>>h[i];
s[i]=s[i-1]+h[i];
}
l=1,r=n;
while(l<r)
{
mid = l+r >> 1;
if(check(mid)) r=mid;
else l=mid+1;
}
cout<<l<<endl;
return 0;
}