P8775 [蓝桥杯 2022 省 A] 青蛙过河

文章介绍了两种使用二分搜索策略解决青蛙过河问题的方法。第一种是直接暴力模拟,但由于计算量大可能导致超时。第二种方法利用差分,通过确保任意长度为跳跃能力的区间高度和大于2倍的青蛙数量,来确定青蛙能否上岸。二分查找优化了搜索过程,提高了效率。
摘要由CSDN通过智能技术生成

题目链接:[蓝桥杯 2022 省 A] 青蛙过河 - 洛谷

解法一:打暴力: 二分+模拟

很直接,不解释,肯定超时

代码:

#include<iostream>
#include<cstring>
using namespace std;

const int N = 100005;

int n,x;
int h[N];
int tmp[N];
int l,r,mid;

bool check(int mid)
{
    if(mid>=n) return true;

    memcpy(tmp,h,sizeof h);
    int pos;
    for(int k=1;k<=x;k++)
    {
        pos=0;
        while(pos<n)
        {
            int head=pos;
            for(int i=pos+mid;i>pos;i--)
            {
                //上岸了
                if(i>=n)
                {
                    pos=N;
                    break;
                }
                if(tmp[i]>0)
                {
                    pos=i;
                    tmp[i]--;
                    break;
                }
            }
            if(pos==head) return false;
        }

        pos=n;
        while(pos>0)
        {
            int head=pos;
            for(int i=pos-mid;i<pos;i++)
            {
                //上岸了
                if(i<=0) 
                {
                    pos=-1;
                    break;
                }
                //找下一个着陆点
                if(tmp[i]>0)
                {
                    pos=i;
                    tmp[i]--;
                    break;
                }
            }
            if(pos==head) return false;
        }
    }
    
    return true;
}

int main()
{
    cin>>n>>x;
    for(int i=1;i<n;++i) cin>>h[i];

    l=1,r=N;
    while(l<r)
    {
        mid = l+r >> 1;
        if(check(mid)) r=mid;
        else l=mid+1;
    }

    cout<<l<<endl;

    return 0;
}

解法二:二分+差分

思路:

假设青蛙跳跃的长度为y,那么对任意一个区间 [ l , l+y-1 ] , 高度和一定大于2x。

因为青蛙最多跳y格,所以无法直接跳过这个区间,要通过2x次,所以这段高度和一定大于2x。

如果每一段的高度和都大于2x,那么对于0~n的任意一点a,都有大于等于2x种途径跳上a,因为区间 [ a-y , a-1 ] 的高度和大于等于2x , 且这段区间的每个点都能跳上a (如果 a-y < 0 , 则可以直接从岸上跳到a )。

综上,只要保证任意一段长度为y的区间,高度和大于2x,青蛙跳跃能力为y时就可以上岸。

代码:

#include<iostream>
using namespace std;

const int N = 100005;
int n,x;
int h[N];
long long s[N];
int l,r,mid;

bool check(int mid) 
{
    for(int i=1;i+mid-1<n;++i)
    {
        int j=i+mid-1;
        if(s[j]-s[i-1]<2*x) return false;
    }
    return true;
}

int main()
{
    cin>>n>>x;
    for(int i=1;i<n;++i)
    {
        cin>>h[i];
        s[i]=s[i-1]+h[i];
    }

    l=1,r=n;
    while(l<r)
    {
        mid = l+r >> 1;
        if(check(mid)) r=mid;
        else l=mid+1;
    }

    cout<<l<<endl;

    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值