前言
近来,分布式的问题被广泛提及,比如分布式事务、分布式框架、ZooKeeper、SpringCloud等等。本文先回顾锁的概念,再介绍分布式锁,以及如何用Redis来实现分布式锁。
一、锁的基本了解
首先,回顾一下我们工作学习中的锁的概念。
为什么要先讲锁再讲分布式锁呢?
我们都清楚,锁的作用是要解决多线程对共享资源的访问而产生的线程安全问题,而在平时生活中用到锁的情况其实并不多,可能有些朋友对锁的概念和一些基本的使用不是很清楚,所以我们先看锁,再深入介绍分布式锁。
通过一个卖票的小案例来看,比如大家去抢dota2 ti9门票,如果不加锁的话会出现什么问题?此时代码如下:
**代码分析:**这里有8张ti9门票,设置了10个线程(也就是模拟10个人)去并发抢票,如果抢成功了显示成功,抢失败的话显示失败。按理说应该有8个人抢成功了,2个人抢失败,下面来看运行结果:
我们发现运行结果和预期的情况不一致,居然10个人都买到了票,也就是说出现了线程安全的问题,那么是什么原因导致的呢?
原因就是多个线程之间产生了时间差。
如图所示,只剩一张票了,但是两个线程都读到的票余量是1,也就是说线程B还没有等到线程A改库存就已经抢票成功了。
怎么解决呢?想必大家都知道,加个synchronized关键字就可以了,在一个线程进行reduce方法的时候,其他线程则阻塞在等待队列中,这样就不会发生多个线程对共享变量的竞争问题。
举个例子
比如我们去健身房健身,如果好多人同时用一台机器,同时在一台跑步机上跑步,就会发生很大的问题,大家会打得不可开交。如果我们加一把锁在健身房门口,只有拿到锁的钥匙的人才可以进去锻炼,其他人在门外等候,这样就可以避免大家对健身器材的竞争。代码如下:
运行结果:
果不其然,结果有两个人没有成功抢到票,看来我们的目地达成了。
二、锁的性能优化
2.1 缩短锁的持有时间
事实上,按照我们对日常生活的理解,不可能整个健身房只有一个人在运动。所以我们只需要对某一台机器加锁就可以了,比如一个人在跑步,另一个人可以去做其他的运动。
对于票务系统来说,我们只需要对库存的修改操作的代码加锁就可以了,别的代码还是可以并行进行,这样会大大减少锁的持有时间,代码修改如下:
这样做的目的是充分利用cpu的资源,提高代码的执行效率。
这里我们对两种方式的时间做个打印:
果然,只对部分代码加锁会大大提供代码的执行效率。
所以,在解决了线程安全的问题后,我们还要考虑到加锁之后的代码执行效率问题。
2.2 减少锁的粒度
举个例子,有两场电影,分别是最近刚上映的魔童哪吒和蜘蛛侠,我们模拟一个支付购买的过程,让方法等待,加了一个CountDownLatch的await方法,运行结果如下:
执行结果:
魔童哪吒的剩余票数为:20
我们发现买哪吒票的时候阻塞会影响蜘蛛侠票的购买,而实际上,这两场电影之间是相互独立的,所以我们需要减少锁的粒度,将movie整个对象的锁变为两个全局变量的锁,修改代码如下:
执行结果:
魔童哪吒的剩余票数为:20
蜘蛛侠的剩余票数为:100
现在两场电影的购票不会互相影响了,这就是第二个优化锁的方式:减少锁的粒度。顺便提一句,Java并发包里的ConcurrentHashMap就是把一把大锁变成了16把小锁,通过分段锁的方式达到高效的并发安全。
2.3 锁分离
锁分离就是常说的读写分离,我们把锁分成读锁和写锁,读的锁不需要阻塞,而写的锁要考虑并发问题。
三、锁的种类
- 公平锁: ReentrantLock
- 非公平锁: Synchronized、ReentrantLock、cas
- 悲观锁: Synchronized
- 乐观锁:cas
- 独享锁:Synchronized、ReentrantLock
- 共享锁:Semaphore
这里就不一一讲述每一种锁的概念了,大家可以自己学习,锁还可以按照偏向锁、轻量级锁、重量级锁来分类。
四、Redis分布式锁
了解了锁的基本概念和锁的优化后,重点介绍分布式锁的概念。
上图所示是我们搭建的分布式环境,有三个购票项目,对应一个库存,每一个系统会有多个线程,和上文一样,对库存的修改操作加上锁,能不能保证这6个线程的线程安全呢?
当然是不能的,因为每一个购票系统都有各自的JVM进程,互相独立,所以加synchronized只能保证一个系统的线程安全,并不能保证分布式的线程安全。
所以需要对于三个系统都是公共的一个中间件来解决这个问题。
这里我们选择Redis来作为分布式锁,多个系统在Redis中set同一个key,只有key