任务一:Lagent搭建过程记录
使用 Lagent 复现文档中 “制作一个属于自己的Agent” 和 “Multi-Agents博客写作系统的搭建”两部分内容,记录复现过程并截图。
1、环境配置
配置开发机:开发机选择 30% A100,镜像选择为 Cuda12.2-conda。
- 首先来为 Lagent 配置一个可用的环境。
# 创建环境
conda create -n lagent python=3.10 -y
# 激活环境
conda activate lagent
# 安装 torch
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖包
pip install termcolor==2.4.0
pip install streamlit==1.39.0
pip install class_registry==2.1.2
pip install datasets==3.1.0
- 接下来,我们通过源码安装的方式安装 lagent。
# 创建目录以存放代码 mkdir -p /root/agent_camp4 cd /root/agent_camp4 git clone https://github.com/InternLM/lagent.git cd lagent && git checkout e304e5d && pip install -e . && cd .. pip install griffe==0.48.0
2、Lagent框架中Agent的使用
创建一个代码example,创建agent_api_web_demo.py
,在里面实现我们的Web Demo:
conda activate lagent cd /root/agent_camp4/lagent/examples touch agent_api_web_demo.py
在终端中记得先将获取的API密钥写入环境变量,然后再输入启动命令:
export token='your_token_here' streamlit run agent_api_web_demo.py
接下来,在本地浏览器中打开 http://localhost:8501/:
尝试进行几轮简单的对话,并让其搜索文献,会发现大模型现在尽管有比较好的对话能力,但是并不能帮我们准确的找到文献,例如输入指令“帮我搜索一下最新版本的MindSearch论文”,会提示没有这方面的能力,以下是尝试对话并搜索文献的截图:
3、“Multi-Agents博客写作系统的搭建”
首先,创建一个新的 Python 文件 multi_agents_api_web_demo.py
,并进入 lagent
环境:
conda activate lagent cd /root/agent_camp4/lagent/examples touch multi_agents_api_web_demo.py
运行streamlit run multi_agents_api_web_demo.py
,启动Web服务 输入话题,比如Semi-Supervised Learning,
可以看到,Multi-Agents博客写作系统正在按照下面的3步骤,生成、批评和完善内容。