Date:2022.03.12
题目描述
四方定理是众所周知的:任意一个正整数n,可以分解为不超过四个整数的平方和。例如: 25 = 1 2 + 2 2 + 2 2 + 4 2 25=12+22+22+42 25=12+22+22+42,当然还有其他的分解方案, 25 = 4 2 + 3 2 25=42+32 25=42+32 和 25 = 5 2 25=5^2 25=52。给定的正整数n,编程统计它能分解的方案总数。注意: 25 = 4 2 + 3 2 25=42+32 25=42+32 和 25 = 3 2 + 4 2 25=32+42 25=32+42视为一种方案。
输入格式
第一行为正整数t(t≤100),接下来tt行,每行一个正整数n(n≤32768)。
输出格式
对于每个正整数nn,输出方案总数。
输入输出样例
输入 #1复制
1
2003
输出 #1复制
48
思路:规定某个数的平方为第一花费,上限为给定的 n n n;参与数的个数为第二花费,上限为4。
状态转移方程: f [ i ] [ j ] + = f [ i 第 一 花 费 ] [ j 第 二 花 费 ] ; f[i][j]+=f[i-第一花费][j-第二花费]; f[i][j]+=f[i第一花费][j第二花费];
代码如下:
#include <bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef long long LL;
const LL N = 32768,INF=0x3f3f3f3f3f3f3f3f;
typedef pair<LL, LL> PII;
LL t,n,m,k;
LL f[N+1010][5];
int main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>t;
f[0][0]=1;
for(int i=1;i<=sqrt(N);i++)
for(int j=i*i;j<=N;j++)
for(int k=1;k<=4;k++)
f[j][k]+=f[j-i*i][k-1];
while(t--)
{
cin>>n;
LL ans=0;
for(int i=1;i<=4;i++) ans+=f[n][i];
cout<<ans<<endl;
}
return 0;
}