【动态规划】最长不下降子序列

本文介绍了一道关于求最长不下降子序列长度的问题,通过动态规划方法求解,并给出了C++代码实现。关键步骤包括初始化、状态转移方程和找到最终答案。
摘要由CSDN通过智能技术生成
题目描述

有长度为N的序列:
A1 A2 …..An
求最长不下降子序列:Ai1,Ai2,,,,,Aik, 其中ai1<=ai2<=.....<=aik
求最长不下降子序列的长度 

输入

从文件 seq.in 中读入数据。

 第一行,n; 
第二行,n 个数。

输出

输出到文件 seq.out 中。

最长不下降子序列的长度 

样例输入 复制
11
1 3 6 3 4 7 5 7 6 7 8
样例输出 复制
8

如:1 3 3 4 5 6 7 8

-------------------------------------------------------------------------------------------------------------------------------

        正片开始!      

        首先,按照国际惯例,这是一道十分淼的题(没做出的同学请冷静),本蒟蒻也才花了0.5小时才解出来

        题意为:求最长不下降子序列的长度 ,注意:并不用连续

        好,这很明显就是一道DP题,我们可以推导一下

        首先,我们可以画一个图

        

        a数组代表我们的输入,DP代表从第i个数开始,向后的最长不下降子序列,dp要初始化为1哦

        然后呢,我们枚举i个数,看他的最长不下降子序列, 即

                OK,理论存存存在!,开始Code

        

#include <bits/stdc++.h>
using namespace std;
int n;
int a[999999], dp[999999];
int cnt = 1, ans;
int main() {
//	freopen("seq.in","r",stdin);
//	freopen("seq.out","w",stdout);
	cin >> n;
	for (int i = 1; i <= n; i++) cin >> a[i];
	for (int i = 1; i <= n; i++) dp[i] = 1;//初始化
	for (int i = 2; i <= n; i++) {
		for (int j = 1; j < i; j++) {
			if (a[j] <= a[i])
				dp[i] = max(dp[j] + 1, dp[i]);//状态转移方程
		}
		ans = max(dp[i], ans);//得出最长子序列
	}
	cout << ans ;
	return 0;
}

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值