leetcodeD4(今日关键词:二分)

文章介绍了如何使用二分查找算法解决在排序数组中查找元素的第一个和最后一个位置(搜索范围)、寻找旋转排序数组中的最小值,以及优化边界判断以保持时间复杂度为O(logn)。
摘要由CSDN通过智能技术生成

0704. 二分查找 (记住!经典模型)

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int L=0;
        int R=nums.size()-1;
        
       while(L<R){
           int mid=L+(R-L)/2;
           if(nums[mid]==target) return mid;
           else if(nums[mid]>target) R=mid-1;
           else L=mid+1;
       }
        
        return -1;
    }
};

 0034. 在排序数组中查找元素的第一个和最后一个位置

两次二分查找完美解决 

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
         if (nums.size() == 0)
            return {-1,-1};
        // 两次二分查找,分开查找第一个和最后一个
        // 时间复杂度 O(log n), 空间复杂度 O(1)
        // [1,2,3,3,3,3,4,5,9]

        int left = 0;
        int right = nums.size() - 1;
        int first = -1;
        int last = -1;
        // 找第一个等于target的位置
        while (left <= right) {
            int middle = (left + right) / 2;
            if (nums[middle] == target) {
                first = middle;
                right = middle - 1; //重点,每次都向前,刷新
            } else if (nums[middle] > target) {
                right = middle - 1;
            } else {
                left = middle + 1;
            }
        }

        // 最后一个等于target的位置
        left = 0;
        right = nums.size() - 1;
        while (left <= right) {
            int middle = (left + right) / 2;
            if (nums[middle] == target) {
                last = middle;
                left = middle + 1; //重点,每次都向后,刷新
            } else if (nums[middle] > target) {
                right = middle - 1;
            } else {
                left = middle + 1;
            }
        }

        return vector<int>{first, last};
        }
    };

0153. 寻找旋转排序数组中的最小值

如果没有复杂度的限制:一个赖皮方法,sort

还有一个方法:抓住下降这一步。

class Solution {
public:
    int findMin(vector<int>& nums) {
        int div = 0;
        int n = 0;
        
        for ( int num : nums) {
            div = num - n;
            n = num;
            if (div < 0) 
                return num;
            
            
        }
        return nums[0];
    }
    
};

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。那么就要使用二分查找了

class Solution {
public:
    int findMin(vector<int>& nums) {
        int L=0;
        int R=nums.size()-1;
        int mid;
        while(L<R){
            mid=L+(R-L)/2;
            if(nums[mid]<nums[R]){
                R=mid;
            }
            else L=mid+1;
        }
        return nums[L];
    }
    
};

关于其中边界的判断



//        二分查找
        while(low < high){
//            取中间值
            int mid = (high+low)/2;
//            如果中间值小于最大值,则最大值减小
//            疑问:为什么 high = mid;而不是 high = mid-1;
//            解答:{4,5,1,2,3},如果high=mid-1,则丢失了最小值1
            if (nums[mid] < nums[high]) {
                high = mid;
            } else {
//                如果中间值大于最大值,则最小值变大
//                疑问:为什么 low = mid+1;而不是 low = mid;
//                解答:{4,5,6,1,2,3},nums[mid]=6,low=mid+1,刚好nums[low]=1
//                继续疑问:上边的解释太牵强了,难道没有可能low=mid+1,正好错过了最小值
//                继续解答:不会错过!!! 如果nums[mid]是最小值的话,则其一定小于nums[high],走if,就不会走else了
                low = mid+1;
            }
        }
//        疑问:为什么while的条件是low<high,而不是low<=high呢
//        解答:low<high,假如最后循环到{*,10,1,*}的这种情况时,nums[low]=10,nums[high]=1,nums[mid]=10,low=mid+1,
//             直接可以跳出循环了,所以low<high,此时low指向的就是最小值的下标;
//             如果low<=high的话,low=high,还会再不必要的循环一次,此时最后一次循环的时候会发生low==high==mid,
//             则nums[mid]==nums[high],则会走一次else语句,则low=mid+1,此时low指向的是最小值的下一个下标,
//             则需要return[low-1]
        return nums[low];
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值