- 博客(6)
- 收藏
- 关注
原创 刘二老师PyTorch深度学习实践笔记
解释如下:每个阶段的代表模型:深度学习具有特性,模型从输入到输出的整个过程自动学习特征和做出预测。表示学习的特征可以通过无监督或有监督的方式进行学习,而特征提取既可以是有监督的,也可以是无监督的。深度学习的端到端特性使得其在某些应用中具有。反向传播(BP)最早的深度学习模型pytorch动态计算图:tf1.x所使用的静态图灵活性低,pytorch所使用的动态计算图构建计算完成会自动释放。在每次前向传播时即时构建,默认在反向传播后释放中间图结构,从而节省内存;。
2025-07-22 16:36:20
833
1
原创 特征提取:ResNet+ FPN网络学习笔记-1
其中,只有第一个BottleNeck都是经过downsample调整input shape,以实现残差连接的tensor形状匹配。其余BottleNeck的残差连接均不经过downsample,因为input shape与putput shape形状一致直接进行残差连接。
2025-03-08 16:35:30
2174
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人