Python 是一种编程语言
更具体的说是解释性脚本语言。
Python 诞生于1991年,在国内流行于2014年。
Python 比较火的原因:
① 语法简单 容易理解
不太关心底层逻辑 (难度比较低)
② 插件比较丰富 (插件丰富)
Python 是一个多面手,可以做的方面有:
① 网站开发
购物网站
企业宣传网站
OA(办公系统)
ERP(企业资源计划系统)
CMR(客户管理系统)
② 数据处理
③ 游戏开发
④ 嵌入式开发
问:Python 是什么
答:Python 是一种计算机语言(人类跟计算机沟通的语言)
问:Python 如何跟计算机交流
答:Python 通过
① python 解释器
② pycharm 编译器
进行跟计算机交流。
关于 python 的安装教程点击我的主页有相关的文章
这里需要说明一点,就是pycharm的汉化问题:
pycharm 作为纯英文的编译器,可能对有些英语基础薄弱的小伙伴(比如说我)或许造成一定困
难。
这里是汉化的的步骤:
① 首先点击 file
② 然后找到 setting
③ 在 setting 选项中找到 plugins(插件)选项
④ 在 plugins 中搜索 Chinese
⑤ 然后选择第二个插件/安装包(图标为一个大写的【汉】)进行安装即可
当你后面基础嘎嘎扎实了,想恢复成原来的状态怎么办
吾有二计供主公选择:
① 卸载重新安装(虽然是馊主意,但是适用于百分之九十的软件问题)
② 卸载已安装的插件(步骤和安装时差不多)
在书写python代码时
需要特别注意
使用英文状态下的标点符号
新建项目 + 配置环境
文件 -》 新建项目 -》 文件夹位置
添加python解释器 -》 找到对应python的安装包 -》 找到exe文件 -》 收工
python 关键字
import keyword # 导入模块
print(keyword.kwlist) # 打印出35个关键字
缩进
python 中的缩进相当于键盘中的空格键
规范:4个空格
在python中我们使用Tab对代码进行缩进
多行语句
单行 变 多行 必须有斜杠(所写的代码没有括号的时候)
可以没有斜杠(所写的代码在括号(大、中小)中的时候)
这里来一段简单的代码示范吧。
1. 单行语句:
x = 1 + 2 * 3
2. 多行语句
x = 1
y = 2
z = 3
result = x + y * z
3. 使用括号
x, y, z = 1, 2, 3
result = (x + y) * z
4. 使用换行符
x = 1
y = 2
z = 3
result = x + y * z
print(result)
多行语句可以提高代码的可读性
需要注意的是,在使用多行语句时,确保适当的换行位置,以免影响代码的执行。
python 引号
在 Python 中,单引号(')和双引号(")的作用是类似的,它们都用于表示字符串。
无论是使用单引号还是双引号,都可以定义字符串常量。
但是,需要注意的是,单引号和双引号之间有一些细微的差别:
1. 字符串长度限制:使用单引号时,字符串长度限制为 79 个字符。而使用双引号时,字符串
长度限制为 78 个字符。这是因为双引号内部的字符串包含了一个额外的双引号,因此实际可用的
字符空间较少。
2. 转义字符:在使用单引号时,需要使用两个反斜杠(\\)来表示一个反斜杠。而在双引号
中,只需使用一个反斜杠(\)即可。
3. 嵌入变量:在双引号中的字符串可以包含变量,而单引号中的字符串不能直接嵌入变量。
如果需要在单引号字符串中使用变量,可以使用转义字符(\\)或者将变量放在括号中。
下面我举个栗子:
# 使用单引号
single_quotes = 'Hello, World!'
print(single_quotes)
# 使用双引号
double_quotes = "Hello, World!"
print(double_quotes)
# 在单引号中使用变量
single_quotes_with_variable = 'Hello, Python!'
print(single_quotes_with_variable)
输出结果:
Hello, World!
Hello, World!
Hello, Python!
总的来说,单引号和双引号在 Python 中的作用相似,但存在一些细微的差别。
在实际编程中,可以根据需要和个人喜好选择使用单引号或双引号。
多引号则表示注释。
Python 注释
① #
Python 注释是用井号(#)标记的单行文本,用于解释代码的功能或用途
② 三引号(不分单引号和双引号)
在多行注释中,可以使用三个单引号(''')或三个双引号(""")将注释文本括起来
多行注释通常用于解释代码段的用途或提供相关说明
下面是具体示范:
# 这是一个单行注释
print("Hello, World!")
"""
这是一个
多行注释
"""
print("Welcome to Python comments!")
① 注释不会影响代码的执行(注释的代码不会被计算机运行)
② 注释可以作为作为笔记的描述
Python 的空格和空行
作用:美化代码,增强可读性
Python 输入与输出函数
输出函数 print()
输入函数 input()
可以用变量接收
Python 转义符
转义符(即 \ + 特异功能的首字母)用于表示特殊字符或控制代码的格式。
以下是一些常用的转义字符:
① 换行 :\ n
print("Line 1\nLine 2")
② 制表符:\ t 缺 4 补满(即每 4 个为一组)
print("Column 1\tColumn 2\tColumn 3")
③ 覆盖:\ r 后面的覆盖掉前面的
line1 = "Hello, World!"
line2 = "Python is great!"
print("\r".join([line1, line2]))
④ 删除:\ b backspace 删除前面的一个
text = "Hello, World!\bPython is great!"
print(text)
⑤ 两个 \ 表示一个 \
file_path = "C:\\Users\\username\\Documents\\file.txt"
print(file_path)
⑥ 原字符:使转义字符不起作用,写在最前面,用 R 或 r 表示
raw_string = r"C:\\Users\\username\\Documents\\file.txt"
print(raw_string)
原字符一般用于目标文件地址的读取
举个栗子:
file_path = r"C:\Users\username\Documents\file.txt"
Python 变量
必须对变量进行赋值,不然会报错
Python 中存在的变量必然有值
变量命名规则:
① 变量名只能是字母、数字和下划线的任意组合
② 变量名的第一个字符不能是数字
③ 变量名区分大小写,大小写字母被认为是两个不同的字符
④ 特殊关键字不能命名为变量名
变量赋值
多个变量赋值 a,b,c = 30,50,40
Python 常量
常量是具有固定值的标识符,通常用于表示数学常数、颜色、字符串等
BI = 3.1415926
常量的值不会轻易被改变
常量通常大写
Python 的数字类型(Python 3 中有6个标准的数据类型)
不可变数据(3个):Number(数字),String(字符串),Tuple(元组)
可变数据(3个):List(列表),Dictionary(字典),Set(集合)
Number(数字)
Python 支持 int ,float ,bool 类型
① 整数型 ( int )
通常被称为整型或者整数,是正数或者负数,不带小数点
② 浮点型
浮点型由整数部分和小数部分组成
③ 布尔型
True 真
Flase 假
举个栗子(数值运算示例)
print( 5 + 4 ) # 加法
print( 5 - 4 ) # 减法
print( 5 * 7 ) # 乘法
print( 2 / 7 ) # 除法,得到一个浮点数 输出 0.5
print( 2 // 4 ) # 除法,得到一个整数 输出 0
print( 17 % 3 ) # 取余(也叫取模运算) 输出 2
print( 2 ** 5 ) # 乘方 输出32
Python 中比较常见的比较运算符(返回布尔值)
大于 >
大于等于 >=
小于 < True = 1
小于等于 <= Flase = 0
不等于 !=
等于 ==
运算符 与或非
布尔值也可以用 and,or,not 来进行运算
and 与
and 运算是与运算,只有所有都为 True,and 结果才为 True
or 或
or 运算是或运算,只要其中有一个为 True,or 运算结果就是 True
not 非
not 运算是非运算,它是一个单目运算符,把 true变为 flase,把 flase 变成 true,表示
对后面的布尔表达式进行取反运算。
Python的空值及内置函数的返回值
① Python 的空值
None 单独存在的数据类型,表示什么都没有
② 内置函数的返回值
None 函数运行之后是可以有返回值的(在于我们自己的设置)
知识拓展
Python的历史与发展
Python的历史可以追溯到1991年,当时吉多·范罗苏姆(Guido van Rossum)开始开发这个
编程语言。Python的设计初衷是实现一种易于阅读和编写代码的编程语言,旨在帮助初学者更容易
地学习编程。
Python最初主要用于教育领域,但随着时间的发展,它逐渐成为一种多用途的编程语言,被
广泛应用于网站开发、数据科学、人工智能等领域。
Python的语法特点
Python的语法简单明了,易于学习和理解。
它采用缩进来区分代码块,这有助于提高代码的可读性。
Python还支持多种编程范式,包括面向对象编程、函数式编程等。这些特点使得Python成为
一种非常灵活和强大的编程语言。
Python的应用场景
Python的应用场景非常广泛,主要有以下几个方面:
1. 网站开发
Python可以用于开发各种类型的网站,包括购物网站、企业宣传网站等。
常用的 Python 框架包括 Django 和 Flask ,它们提供了丰富的功能和组件,帮助开发者更
高效地开发网站。
2. 数据处理
Python 的 Pandas 和 NumPy 库使得数据处理变得简单高效。
这些库提供了强大的数据结构和操作工具,可以轻松地处理大型数据集。
3. 游戏开发
Python可以用于开发各种类型的游戏,包括桌面游戏和网络游戏。
Pygame 是一个常用的Python游戏开发库,它提供了丰富的图形和声音功能,可以帮助开发
者快速开发游戏。
4. 嵌入式开发
Python可以用于开发嵌入式系统,如智能家居设备、工业控制系统等。
Python的嵌入式解释器 MicroPython可以运行在各种微控制器上,提供了一种高效的方式来
进行嵌入式开发。
Python的高级编程技巧
Python的高级编程技巧包括多线程、多进程、网络编程等。这些技巧可以帮助程序员更高效
地利用计算机资源,解决复杂的问题。
1. 多线程
Python 的 threading 模块提供了多线程的支持。通过使用多线程,程序员可以同时执行多个
任务,提高程序的执行效率。
2. 多进程
Python的 multiprocessing 模块提供了多进程的支持。多进程可以独立于其他进程运行,有
助于提高程序的执行效率。
3. 网络编程
Python 的 socket 模块提供了网络编程的支持。通过使用 socket 模块,程序员可以轻松地实
现网络通信,如TCP/IP协议。
Python的生态系统
Python拥有丰富的插件和库,这使得Python能够处理各种复杂的问题。
例如,NumPy和Pandas用于数据处理,Django和Flask用于网站开发,TensorFlow和
PyTorch用于人工智能等。这些库和框架为Python提供了强大的功能和组件,帮助开发者更高效地
解决问题。
Python的生态系统
Python的生态系统非常庞大和活跃,它拥有成千上万的第三方库和框架,这些库和框架覆盖
了从数据科学到人工智能,从Web开发到桌面应用,从自动化测试到游戏开发等众多领域。
下面是Python生态系统中的关键组成部分
1. 标准库
Python自带了一套丰富的标准库,涵盖了文件操作、网络编程、数据处理、文本处理等多个
方面。这些库为Python程序员提供了基础的编程工具。
2. 第三方库
Python的第三方库非常丰富,包括科学计算的NumPy和Pandas,数据分析的Matplotlib和
Seaborn,Web开发的Flask和Django,人工智能的TensorFlow和PyTorch等。这些库通过PyPI
(Python Package Index)进行分发和安装。
3. IDE和编辑器
Python有许多优秀的集成开发环境(IDE)和代码编辑器,如PyCharm、Visual Studio
Code、Spyder、Atom等,它们提供了代码补全、语法高亮、调试工具等功能,大大提高了编程效
率。
4. 社区和文档
Python有一个庞大的全球开发者社区,社区成员活跃在GitHub、Stack Overflow、Reddit等
平台,为Python用户提供支持和技术交流。
同时,Python的官方文档和教程非常全面,是初学者和进阶开发者的重要资源。
Python的性能优化
尽管Python以其简洁和易用性著称,但当涉及到性能敏感的应用时,Python的运行速度可能
不如一些编译型语言。不过,Python的性能可以通过多种方式进行优化:
1. 使用C扩展:Python提供了与C语言的接口,通过C扩展可以提高Python代码的执行速度。
2. JIT编译:使用像PyPy这样的JIT编译器,可以在运行时对Python代码进行优化,从而提高
性能。
3. 避免全局解释器锁(GIL):GIL是CPython(Python的标准实现)的一个特性,它限制
了多线程的效率。在需要高并发或并行处理的应用中,可以使用像Cython这样的工具来编写C扩
展,或者选择使用像Jython、IronPython这样的解释器,它们没有GIL的限制。
4. 算法优化:通过优化算法和数据结构,可以显著提高Python程序的性能。
例如,使用哈希表来存储和检索数据通常比使用列表快得多。
5. 使用更快的库:有些Python库提供了更快的替代实现。
例如,使用NumPy的C库而不是Pandas的纯Python实现。
Python的安全性
Python的安全性取决于多个因素,包括编程实践、库的成熟度以及系统的配置。
提高Python应用程序安全性的最佳实践有:
1. 输入验证:确保对所有用户输入进行验证和清理,以防止恶意输入导致的代码执行。
2. 使用安全的数据库库:选择成熟和经过测试的数据库,并遵循最佳实践来防止SQL注入等
攻击。
3. 使用加密:在存储敏感数据时使用加密,并在传输数据时使用SSL/TLS等安全协议。
4. 代码审查:进行代码审查和静态分析,以发现潜在的安全漏洞。
5. 保持系统更新:定期更新Python和所有依赖库,以修复已知的安全漏洞。
Python的未来
Python的未来看起来非常光明。随着人工智能和机器学习的兴起,Python在这些领域中的地
位日益稳固。此外,Python的简洁和易学性使得它成为初学者和研究人员的首选语言。
Python的社区也在不断发展,新的库和框架不断涌现,为Python的应用提供了更多的可能
性。
结论
Python是一种强大且灵活的编程语言,它在多个领域中都有着广泛的应用。
通过本文的详细介绍,我们了解了Python的历史、语法特点、应用场景、高级编程技巧、生
态系统、性能优化和安全性的最佳实践。随着Python社区的不断发展和新技术的引入,Python
将继续在未来的编程世界中发挥重要作用。