图的基本知识

在图逻辑结构中,任意两个顶点之间都可能有关系,可用于描述各种复杂的数据对象。

我希望我们后面可以一起解决,七巧板涂色问题,农夫过河问题。

图的逻辑结构

图的定义

图(graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G=(V,E),其中,G表示一个图,V是顶点的集合,E是顶点之间边的集合。

我们可以看看下面几个图:

 

无向边,用无序偶对(vi,vj)表示;有向边,用有序偶对<vi,vj>表示。

这里需要注意的是权,在图中,通常是对边赋予的有意义的数值量,这个在实际应用中,有他的具体含义。

图的基本术语

(1)邻接、依附

在无向图中,对于任意两个顶点vi和vj,若存在边(vi,vj),则称顶点vi和vj,互为邻接点(adjacent),同时称边(vi,vj)依附(adhere)于顶点vi和vj。

在有向图中,对于任意两个顶点vi和vj,若存在狐<vi,vj>,则称顶点vi邻接到vj、顶点vj邻接自vi,同时称弧<vi,vj>依附于顶点vi和vj。在不致混淆的情况下,通常称vj是vi的邻接点。

(2)顶点的度、入度、出度

在无向图中,顶点v的度(degree)是指依附于该顶点的边的个数,记为TD(v)。在具有n个顶点e条边的无向图中,有下式成立:

 

在有向图中,顶点v的入度(in-degree)是指以该顶点为弧头的弧的个数,记为ID(v);顶点v的出度(out-degree)是指以该顶点为弧尾的弧的个数,记为OD(v)。在具有n个顶点e条边的有向图中,有下式成立:

 

(3)无向完全图、有向完全图 在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图(undirected complete graph)。含有n个顶点的无向完全图有n*(n一l)/2条边。

在有向图中,如果任意两顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图(directed complete graph)。含存n个顶点的有向完全图有n*(n-l)条边。

(4)稠密图、稀疏图

称边数很少的图为稀疏图(sparse graph),反之,称为稠密图(dense graph).

(5)路径、路径长度、回路

 

(6)简单路径、简单回路

在路径序列中,顶点不重复出现的路径称为简单路径(simple path),除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路称为简单回路(simple circuit).

(7)子图

 

(8)连通图、连通分量

(9)强连通图、强连通分量

后面陆续分享一些图的遍历相关知识

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值