- 博客(8)
- 收藏
- 关注
原创 day08||深度学习(李沐动手学深度学习)
学习进度:【37/73】提升GPU利用率CPU/GPU 带宽CPU/GPU 高性能计算编程总结手机内部的芯片DSP:数字信号处理TPU,全称为Tensor Processing Unit(张量处理单元),是一种专门用于机器学习的高性能芯片。它由Google设计,旨在优化和加速深度学习任务,如神经网络的训练和推理过程。TPU的设计围绕脉动阵列(Systolic Array)的概念,利用128x128的乘法累加单元(MXU)阵列,通过高效的矩阵运算来提升计算速度。这种设计使得TPU在执行机器学习相关任务时,相比
2024-09-03 11:45:16 723
原创 day07||深度学习(李沐动手学深度学习)
NiN是在AlexNet问世不久后提出的。它们的卷积层设定有类似之处。NiN使用卷积窗口形状分别为11×11、5×5和3×3的卷积层,相应的输出通道数也与AlexNet中的一致。每个NiN块后接一个步幅为2、窗口形状为3×3的最大池化层。除使用NiN块以外,NiN还有一个设计与AlexNet显著不同:NiN去掉了AlexNet最后的3个全连接层,取而代之地,NiN使用了输出通道数等于标签类别数的NiN块,然后使用全局平均池化层对每个通道中所有元素求平均并直接用于分类。
2024-08-29 15:46:59 773
原创 day04||深度学习(李沐动手学深度学习)
不带参数的层带参数的层定义具有参数的层, 这些参数可以通过训练进行调整。我们可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。比如管理访问、初始化、共享、保存和加载模型参数。这样做的好处之一是:我们不需要为每个自定义层编写自定义的序列化程序。现在,让我们实现自定义版本的全连接层。该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。在此实现中,我们使用修正线性单元作为激活函数。该层需要输入参数:in_units和units,分别表示输入数(输入维度)和输出数(输出维度)。
2024-08-02 21:25:20 1884
原创 day02||深度学习(李沐动手学深度学习)
【 9/73】线性代数:本节代码文件在源代码文件的chapter_preliminaries/linear-algebra.ipynb中标量由只有一个元素的张量表示向量视为标量值组成的列表通过张量的索引来访问任一元素好的又出问题了,因为没有mxnet试了一下这个语句,还是报错跟着这个教程把文件夹换了,重新安装了降维求和①原始shape:[5,4]②原始shape:[2,5,4]梯度指向的是值变化最大的方向需要补充矩阵知识的学习。
2024-07-30 18:41:34 1472
原创 day01||深度学习(李沐动手学深度学习)
子区域:[::3,::2] #从第0行开始,每3行一跳,从第0列开始,每2列一跳。本节代码文件在源代码文件的mxnet/chapter_preliminaries/pandas.ipynb中。子区域:[1:3,1:] #第1到2行,第1到最后1列。一个元素:[1,2]参考这篇文章,成功安装了环境(虽然不知道为啥之前安装不上。但是在运行中出现了问题,可能环境没搭好。而且在配置环境过程中出现如下情况。
2024-07-30 13:41:25 170
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人