自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(106)
  • 收藏
  • 关注

原创 YOLOv8改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】

yolov8添加注意力机制,yolov8改进,yolov8创新

2024-05-28 15:39:42 107

原创 YOLOv5改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】

GcNet,全局注意力机制,yolov5改进

2024-05-28 12:49:25 903

原创 YOLOv8 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】

提高网络的灵活性和表征能力的动态卷积

2024-05-27 15:46:02 491

原创 YOLOv5改进 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】

提高卷积神经网络的灵活性和表征能力的动态卷积,yolov5创新,yolov5改进

2024-05-27 12:50:19 937

原创 YOLOv10论文解读——实时的端到端目标检测模型【附结构图】

YOLOv10引入了额外的one-to-one头部,通过双分配策略,在训练时提供更丰富的监督信息,而在推理时则利用one-to-one头部进行高效预测,从而无需NMS后处理。此外,YOLOv10从效率和准确性两个方面全面优化了YOLO的各个组件,包括轻量级分类头部、空间-通道解耦的下采样层、基于秩的模块设计等,以降低计算冗余并提升模型性能。YOLOv10检测器的提出不仅为实时目标检测领域带来了新的突破,也展示了通过后处理和模型设计的联合优化,同时提升效率和精度的有效思路。

2024-05-25 19:57:36 1141

原创 YOLOv10 | 无NMS的YOLO | 实时端到端目标检测的新突破

YOLOv10,yolov8,yolov10

2024-05-25 10:41:06 856

原创 YOLOv5改进 | 卷积模块 | 即插即用的可变核卷积AKConv【附代码+小白可上手】

YOLOv5改进,创新,

2024-05-24 14:14:02 1185

原创 YOLOv8 | 卷积模块 | 即插即用的可变核卷积AKConv【附代码+小白可上手】

YOLOv8创新,yolov8改进,yolov8

2024-05-24 12:32:57 113

原创 YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】

YOLOv8改进,小目标检测,yolov8

2024-05-23 15:01:28 350

原创 YOLOv5改进 | 主干网络 | 用repvgg模块替换Conv【教程+代码 】

yolov5改进

2024-05-23 12:32:42 727

原创 机器学习面试问题总结 | 贝叶斯网络

算法工程师面试问题,面试技巧,面经,面试问题

2024-05-22 15:45:05 748

原创 YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】

YOLOv8改进,yolov8创新,yolov8添加模块,yolov8涨点

2024-05-22 12:47:09 510

原创 机器学习面试问题总结 | 集成学习——Boosting&Bagging

算法工程师面试问题,面试技巧,面试总结,面经

2024-05-21 17:45:00 1061

原创 YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】

YOLOv5改进,优化,efficientnet

2024-05-21 12:57:49 1049

原创 深度学习面试问题总结(21)| 模型优化

面试问题,面试,模型优化

2024-05-20 15:07:02 1003

原创 YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】

shuffleNetv2,yolov5改进,yolov5创新

2024-05-20 12:54:33 734

原创 YOLOv5改进 | 卷积模块 | 用DWConv卷积替换Conv【轻量化网络】

YOLOv5改进,涨点,优化

2024-05-19 13:02:14 803

原创 YOLOv8改进 | 卷积模块 | 用DWConv卷积替换Conv【轻量化网络】

YOLOv8改进,yolov8,yolov8创新,yolov8涨点

2024-05-18 16:23:47 782

原创 YOLOv5改进 | 主干网络 | 将backbone替换为MobileNetV3【小白必备教程+附完整代码】

yolov5有效改进涨点,yolov5改进,yolov8

2024-05-18 09:30:43 833

原创 深度学习面试问题总结 | 决策树

面试,面经,面试问题,算法工程师面试

2024-05-17 13:17:13 954

原创 YOLOv5改进 | 主干网络 | 将backbone替换为Swin-Transformer结构【论文必备】

YOLOv5入门,改进加涨点,yolov8,目标检测,目标跟踪

2024-05-17 12:58:51 1162

原创 算法工程师面试问题 | YOLOv8面试考点原理全解析(一)

算法工程师,算法,yolov8,面试,面经

2024-05-16 13:00:06 850

原创 YOLOv5改进 | Neck | 添加双向特征金字塔BiFPN【小白轻松上手 | 论文必备】

YOLOv5改进,bifpn,双向特征金字塔,yolov8改进,yolo

2024-05-16 12:42:57 1072

原创 YOLOv8改进 | 主干网络 | 在backbone添加Swin-Transformer层【论文必备】

YOLOv8改进,Swin-Transform,YOLOv8添加Swin-Transform

2024-05-15 20:57:27 43

原创 深度学习面试问题目录 | 深度学习目标检测、语义分割、分类上百种面试问答技巧

面试,面经,春招,秋招,算法工程师,python,yolov5,yolo8,yolo

2024-05-15 13:08:40 965

原创 深度学习面试问题 | 降维

深度学习面试,算法工程师面试,面试技巧

2024-05-15 12:55:33 811

原创 YOLOv5改进 | 主干网络 | 在backbone添加Swin-Transformer层【论文必备】

Swin-Transformer,yolov5改进,yolov8改进,yolo,目标检测

2024-05-15 07:39:57 728

原创 百面算法工程师 | YOLOv6面试考点原理全解析

算法工程师面试,面试,算法,25届秋招,春招,目标检测岗位,yolov5,yolov8,yolov6

2024-05-14 11:34:40 807

原创 YOLOV5改进 | 注意力机制 | 一网打尽 C3ECA,C3CA,C3CBAM 等多种注意力机制(小白可轻松上手)

yolov5改进,yolov5创新,添加注意力机制

2024-05-14 10:28:39 1089

原创 百面算法工程 | 特征工程相关理论

算法工程师面试,面试,面试问题,面试技巧,怎么准备面试

2024-05-13 11:36:41 695

原创 YOLOv5改进 | 注意力机制 | 添加高效的通道注意力机制——ECA

yolov5改进,yolov5创新,注意力机制

2024-05-13 09:16:35 677

原创 YOLOv5改进 | 注意力机制 | 通道和空间的双重作用的CBAM注意力机制

CBAM(Convolutional Block Attention Module)是一种用于增强卷积神经网络(CNN)性能的注意力机制。它由两个子模块组成:通道注意力模块和空间注意力模块。通道注意力模块通过全局平均池化和全连接层学习通道间的关系,并利用学到的权重对每个通道的特征图进行加权,以增强有用的特征并抑制无用的特征。空间注意力模块则通过对特征图在空间维度上进行最大池化和平均池化操作,结合两种池化结果通过全连接层学习得到每个空间位置的权重,使得网络能够更好地关注图像中的重要区域。

2024-05-12 17:07:11 720

原创 YOLOv5改进 | 注意力机制 | 用于移动端的高效坐标CA注意力机制

YOLOv5添加注意力机制,YOLOv5改进,YOLOv5创新

2024-05-11 13:31:45 1193

原创 百面算法工程师 | 正则优化函数——BN、LN、Dropout

算法工程师面试,面试,25秋招,春招,招聘

2024-05-11 11:29:30 921

原创 YOLOv5改进 | 注意力机制 | 理解全局和局部信息的SE注意力机制

YOLOv5添加注意力机制,yolov5创新

2024-05-10 22:34:13 934

原创 百面算法工程师 | 传统图像处理——OpenCV

面试,算法工程师面试,面经,目标检测,传统图像处理

2024-05-10 21:12:37 1309 6

原创 百面算法工程师 | 模型评价指标及优化策略

面试,算法工程师,面经,yolov5,yolov8

2024-05-09 13:41:44 755 2

原创 YOLOv5入门 | 重要性能衡量指标、训练结果评价及分析及影响mAP的因素【发论文关注的指标】

YOLOv5入门,YOLOv8入门,实验结果,改进,创新

2024-05-09 13:14:38 2129

原创 YOLOv5入门 | 环境配置模型训练完整教程(研0小白必备,手把手教学)

yolov5创新,yolov5环境配置,yolov8

2024-05-08 13:54:34 1064 2

原创 百面算法工程师 | python解释器基础问答

面试提问,面试技巧,面经,面试问题

2024-05-08 13:03:31 668

yolov7添加CSConv等多种模块

目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。我们的方法的有效性在二十多组比较实验中得到了强有力的证明。特别是,与原始检测器相比,通过我们的方法改进的检测器获得了最先进的结果(例如,在公开数据集的Tesla T4 GPU 上以100FPS 的速度获得 70.9% mAP0.5)。目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。

2024-03-16

yolov8结合se注意力机制提升检测效果

卷积神经网络建立在卷积运算的基础上,它通过在局部感受野内将空间和通道信息融合在一起来提取信息特征。为了提高网络的表示能力,最近的几种方法已经显示了增强空间编码的好处。在这项工作中,我们专注于通道关系,并提出了一种新颖的架构单元,我们将其称为“挤压和激励”(SE)块,它通过显式建模通道之间的相互依赖性来自适应地重新校准通道方面的特征响应。我们证明,通过将这些块堆叠在一起,我们可以构建在具有挑战性的数据集上具有极好的泛化能力的 SENet 架构。至关重要的是,我们发现 SE 模块能够以最小的额外计算成本为现有最先进的深度架构带来显着的性能改进。 SENets 构成了我们 ILSVRC 2017 分类提交的基础,该分类提交赢得了第一名,并将 top-5 错误率显着降低至 2.251%,与 2016 年获胜条目相比相对提高了约 25%。

2024-03-01

yolov8结合SwinTransformer注意力机制

Swin Transformer通过引入创新的分层注意力机制(SW-Attention)展现了其架构的独特性,该机制通过将注意力区域划分为块并在这些块内执行操作,从而有效降低了计算复杂性。其主要结构呈现分层形式,每个阶段包括一组基础块,负责捕捉不同层次的特征表示,形成了分层的特征提取过程。采用多尺度的注意力机制使得模型能够同时关注不同大小的特征,从而提高对图像中不同尺度信息的感知。在多个图像分类基准数据集上,Swin Transformer表现出与其他先进模型相媲美甚至更优的性能,且在相对较少的参数和计算成本下取得出色的结果。其模块化设计使得它在目标检测和语义分割等其他计算机视觉任务上也具备良好的通用性。

2024-02-29

垃圾桶溢满检测数据集 明厨亮灶

及时清理满溢的垃圾桶有利于营造良好的卫生环境。利用计算机视觉的目标检测技术对垃圾桶状态进行监测,能够有效提升垃圾桶清理效率。 简介:此数据集包含3个类别,分别为满溢的垃圾桶,未满溢的垃圾桶和垃圾,一共3349张图片,均已完成标注。可用于检测垃圾桶是否满溢,也可以用于检测垃圾、垃圾箱等任务。 针对这个数据集,我们可以进一步发展和应用计算机视觉技术,以提高垃圾桶管理的智能化水平。以下是一些可能的续写: 在当前社会的智能城市发展趋势下,通过结合深度学习和物联网技术,我们可以建立一个智能垃圾桶管理系统。该系统不仅可以检测垃圾桶的状态,还能实时监测垃圾量,提供垃圾分类建议,并优化垃圾桶清理路线,从而最大程度地提高清理效率。 通过引入实时视频监控和图像识别技术,我们可以建立一个自动报警系统。当垃圾桶达到满溢状态时,系统将发送通知给相关的清理人员,以确保及时清理,维护卫生环境。此外,系统还可以生成垃圾桶使用报告,帮助城市管理者更好地了解垃圾生成的模式,从而进行更有效的城市规划和资源分配。 在环保意识日益提高的情况下,这一技术还可以与市民参与互动。通过开发手机应用程序,市民可以实时查看附近垃圾

2024-02-28

gsconv-yolo完整代码分享

目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。我们的方法的有效性在二十多组比较实验中得到了强有力的证明。特别是,与原始检测器相比,通过我们的方法改进的检测器获得了最先进的结果(例如,在公开数据集的Tesla T4 GPU 上以100FPS 的速度获得 70.9% mAP0.5)。

2024-02-28

yolov9改进源码资源

PGI的引入显著提升了轻量级及深层模型的准确度。YOLOv9,结合了PGI和GELAN的设计,展现出了卓越的性能。与YOLOv8相比,YOLOv9在参数和计算量上分别减少了49%和43%,同时在MS COCO数据集上的平均精度(AP)提升了0.6%。 附录A中提供了YOLOv9的训练细节,包括使用SGD优化器进行500周期的训练,以及特定的数据增强设置。YOLOv9的网络架构基于YOLOv7 AF,采用CSP-ELAN块替换了原有的ELAN块,优化了下采样模块,并在预测层进行了调整。 附录B中,作者将YOLOv9与采用不同训练策略的先进实时目标检测模型进行了比较,包括从头开始训练、使用ImageNet预训练、知识蒸馏和更复杂的训练过程等。结果显示,YOLOv9在所有比较中均表现最佳,展示了其在参数效率和计算效率上的优势。 综上所述,YOLOv9不仅在不同规模模型中展示了帕累托最优性,而且在处理计算复杂度与准确度权衡时表现出色,强调了PGI和GELAN的创新设计在提高深度学习模型性能方面的重要贡献。

2024-02-24

口罩数据集,yolo格式

yolo格式的口罩数据集 在我们的日常生活生产中,一些对安全和卫生有要求的车间,戴口罩是一个不可或缺的要求。为了保证生产车间的安全,确保车间的规则落实到位,我们引入了口罩检测,从而提醒员工派戴口罩

2023-02-04

yolo格式的口罩数据集

这个数据集里包含了大约1000张的图片,有image、labels两个文件夹,也有yolo训练需要的txt文件,包含了自己生成目录的算法,你可以更该自己的路径。来满足自己的实验要求,下载下来即可做实验,方便快捷,如果你有什么不懂的地方,也可以私信问我。希望这个数据集能帮到你。口罩还是日常出行需要佩戴的,很多大型公共场所仍然需要佩戴口罩才能进入。mask,yolov5,dataset,format.

2023-01-11

口罩数据集yolov5数据集

口罩数据集,可以用来训练yolo系列的模型,这里面有label文件,直接编写数据集路径就能进行训练了。就可以完成了。数据集 不大也不小,cl为两类,一类是mask,一类是unmask。很简单。最重要的是还包括了未正确佩戴口罩的图片(也就是那些戴口罩漏鼻子的)!把这部分也作为未佩戴口罩的数据集,在极高的实际意义。所有图片均是由人脸识别模块切割出,只包含人脸这一小部分图像,对训练的准确性有极大的提高,还进行了旋转操作实现数据增强。可以是yolo格式的,也可以是voc格式的。

2023-01-08

网络图片爬取crawwormpicture

图片爬取工具(CrawlWorm Picture)是一款专为使用Windows系统的用户打造的一个专业网络图片爬取工具,只需要输入自己需要抓取的网站地址,然后设置搜索参数,软件就会开始分析网页源码获取网站的图片资源,可同时执行5个任务,允许用户自定义搜索设置和管理关键词,软件会按照用户配置的参数采集图片;CrawlWorm Picture会将同时采集图片的数量控制在5个,这样做的原因是避免在采集过程中占用太多资源而导致计算机出现卡顿的情况;这款工具对设计师以及从事媒体工作的用户是很有用的,需要的朋友欢迎下载。 在获取图片时,需要用户自己输入要抓取的根网址,这里的根网址需要保证其真实存在,如果不存在则会提示网页源代码获取失败,从而导致任务启动失败。 在搜索参数设置的时候,需要慎重考虑其各个参数之间的制约关系,有以下几种情况需要说明。 如果搜索深度设置过大,那么就需要将抓取数据容量设置的大一些,否则任务会因为抓取容量不足而被迫停止抓取工作。 如果能够保证自己的网络连接正常,则选择不使用代理服务器。因为使用代理服务器,在任务执行过程中,如果代理服务器失效或者停止活动,则需要重新选择代理服务器

2023-01-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除