
《AI认知筑基三十讲》
文章平均质量分 95
原价99.9,限时9.9,🔥火爆订阅中(半年后恢复原价)。本专栏未来将不少于150篇内容。从【深度学习基础】到【大数据入门】、【NLP入门】等系列,带你一网打尽深度学习中的所有入门知识点。【前20位订阅者享9.9优惠】(目前涨价至15.9~)
十二月的猫
2024年度CSDN博客之星TOP51
山东大学软件学院本科(985高校)
曾获国家奖学金、小米奖学金等国家级、校级奖学金。
展开
-
【人工智能入门必看,避免走弯路】十二月的猫切身经历,从理论到实践的全指南
本文为AI初学者扫除认知盲区,十二月的猫以亲身踩坑经验梳理从理论到实战的捷径。详解机器学习基础、神经网络架构、主流框架对比三大核心模块,剖析图像分类与文本生成两大典型任务的代码实操陷阱。提供开源工具链配置清单、论文精读方法论及模型调试Checklist,直击数据预处理不规范、过拟合诊断缺失等高频痛点。文章总结20+个“后悔没早知道的”实践技巧,助你绕开盲目调参、忽视数学基础等常见误区,建立系统化学习路径,缩短3-6个月摸索期。原创 2025-03-24 12:29:23 · 239 阅读 · 0 评论 -
【神经网络结构的组成】深入理解 转置卷积与转置卷积核
这篇深度学习基础文章将深入解析转置卷积(Transposed Convolution)的核心原理与应用。通过对比常规卷积操作,系统讲解转置卷积如何实现上采样和特征图尺寸扩大的数学机制,重点剖析转置卷积核的工作原理及其在语义分割、生成对抗网络(GAN)等任务中的关键作用。文章结合可视化示例,帮助读者直观理解其"逆向卷积"的本质,并探讨实际应用中可能遇到的棋盘效应等问题及解决方案,为掌握这一重要上采样技术提供理论基础和实践指导。原创 2025-04-14 07:59:10 · 1588 阅读 · 55 评论 -
【深度学习基础】ImageNet数据集介绍、下载与可视化(呕心沥血版)
平常大家最常用的一个数据集就是ImageNet数据集,虽然我们在使用,但是又有多少猫友真正的去了解过它,去下载并可视化这个数据集原初的面貌呢?我相信没有很多人真的去这样做了,也许是觉得浪费时间也许是从前没有仔细去想了解过。但无论如何,猫猫今天都将带你看看ImageNet的前世今生🥰。原创 2025-04-10 09:02:34 · 2143 阅读 · 29 评论 -
【深度学习基础】一篇带你入门计算机视觉(从计算机视觉任务出发)
本文从核心任务切入,系统解析图像分类、目标检测、图像分割和生成式视觉四大方向。文章以ResNet、YOLO、U-Net和GAN等经典模型为脉络,详解卷积神经网络、注意力机制等技术原理,并结合PyTorch实战项目演示算法实现。通过医疗影像分析、自动驾驶等案例,串联数据预处理、模型训练与部署全流程,为零基础读者提供从理论到实战的完整学习路径,助力快速构建计算机视觉知识体系。原创 2025-04-09 19:24:51 · 2419 阅读 · 55 评论 -
【零基础入门】从PyTorch计算机看反向传播(求梯度/求导)
PyTorch的自动求导(autograd)通过动态计算图实现梯度计算。计算图将张量(Tensor)的运算过程记录为节点与边,每一步操作(如加减乘除)都会构建图结构。调用backward()时,系统从输出节点反向遍历计算图,利用链式法则逐层计算梯度,并存储在对应张量的.grad属性中。autograd模块自动管理中间变量,无需手动推导公式。通过requires_grad=True开启跟踪,结合with torch.no_grad()可灵活控制求导范围。这种机制让神经网络的训练变得高效且直观。原创 2025-04-03 10:49:51 · 1447 阅读 · 44 评论 -
【深度学习基础】一篇弄懂训练集、验证集和测试集(呕心沥血版)
在深度学习中,训练集、验证集和测试集是构建和评估模型的核心组成部分。训练集用于模型的学习和参数优化,验证集帮助调整超参数和防止过拟合,而测试集则用于最终评估模型的泛化性能。正确划分和使用这三类数据集,对于开发高效、可靠的深度学习模型至关重要。本文将深入解析它们的作用、划分方法以及在实际应用中的注意事项,帮助你全面理解并掌握数据集的科学使用方法,从而提升模型的实际表现。原创 2025-03-17 10:16:55 · 2361 阅读 · 0 评论 -
【深度学习基础】一次性搞懂什么是AIGC!
全新的时代,AIGC(Artificial Intelligence Generative Content,即人工智能生成内容)正在重新塑造着内容创作生态。当常识能被机器识别,当艺术被重新定义,当创意不再需要人工,广告营销行业将迎来一场生产变革巨浪。数英将持续聚焦AIGC领域,通过资讯分享、认知科普、方法总结、深度访谈等,带领大家多方位了解AIGC。本期内容,我们将梳理22个AI基础概念,带你搞清楚。原创 2024-09-20 11:30:38 · 2352 阅读 · 0 评论 -
【深度学习基础】一篇搞懂什么是RAG(检索增强内容生成)?
有一个名为LangChain的流行开源库,它可以创建聊天机器人,其中包括用 3 行代码对任何网站/文档进行问答。这是LangChain 文档中的一个示例理解问题根据问题内容在网站/文档中检索信息将其中和问题相关的信息输出")它输出特定于 Paul Graham 文章(greatwork)的答案:注意:如果您有兴趣,可以尝试根据 Paul Graham 的文章构建的聊天机器人。第一次运行它时感觉就像纯粹的魔法。这到底是如何工作的?答案是一个称为。原创 2024-08-15 13:52:00 · 1238 阅读 · 0 评论 -
【深度学习基础】多任务学习(Multi-Task Learning)
多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法。在机器学习领域,标准的算法理论是一次学习一个任务,也就是系统的输出为实数的情况。复杂的学习问题先被分解成理论上独立的子问题,然后分别对每个子问题进行学习,最后通过对子问题学习结果的组合建立复杂问题的数学模型。多任务学习是一种联合学习,多个任务并行学习,结果相互影响。一次只学习一个任务(task),大部分的机器学习任务都属于单任务学习。原创 2024-09-26 13:36:58 · 14438 阅读 · 48 评论 -
【深度学习基础】深度学习的发展历史
学习任一门知识都应该先从其历史开始,把握了历史,也就抓住了现在与未来本专栏想要按照深度学习发展历史的流程带大家从简单模型到如今复杂模型一步步吃透深度学习模型的演化流程及基本原理历史深度学习模型的演变可以用一张图来体现。图中的各个模型所在的位置高度体现了模型出现时,模型所引发的影响。由图可以明显看出DL在从06年崛起之前经历了两个低谷,这两个低谷也将神经网络的发展分为了三个不同的阶段,下面就分别讲述这三个阶段。原创 2024-03-26 20:53:06 · 2374 阅读 · 0 评论 -
【大数据入门】数据预处理·数据变换(熵与决策树)
【数据处理与分析】专栏主要专注于数据处理和数据分析。专栏中的【数据科学导论】部分是对整个大数据科学所有技术(包括数据处理、数据分析)的一个概论,适用于想要快速入门大数据的友友们🥰🥰~~~数据科学导论——研究数据科学数据科学——研究大数据处理大数据处理过程——采集、表示与存储、预处理、建模分析、可视化、决策大数据处理过程指导数据科学导论内容本文到这里就结束啦~~期待您的关注~~🥰🥰猫猫陪你永远在路上💪💪下一篇我们将进入数据预处理·数据规约部分~~~原创 2024-11-06 21:18:53 · 1108 阅读 · 0 评论 -
【大数据入门】第五章·数据可视化与文本分析
【数据处理与分析】专栏主要专注于数据处理和数据分析。专栏中的【数据科学导论】部分是对整个大数据科学所有技术(包括数据处理、数据分析)的一个概论,适用于想要快速入门大数据的友友们🥰🥰~~~数据科学导论——研究数据科学数据科学——研究大数据处理大数据处理过程——采集、表示与存储、预处理、建模分析、可视化决策大数据处理过程指导数据科学导论内容前面,我们学习了一下部分:数据清洗(噪声、填充、删除)数据集成(冗余:无序数据冗余+有序数据冗余。无序数据冗余:皮尔逊相关系数、卡方检验;明氏距离、汉明距离;原创 2024-12-28 21:48:33 · 1256 阅读 · 0 评论 -
【大数据入门】第三章·数据预处理
【数据处理与分析】专栏主要专注于数据处理和数据分析。专栏中的【数据科学导论】部分是对整个大数据科学所有技术(包括数据处理、数据分析)的一个概论,适用于想要快速入门大数据的友友们🥰🥰~~~数据科学导论——研究数据科学数据科学——研究大数据处理大数据处理过程——采集、表示与存储、预处理、建模分析、可视化、决策大数据处理过程指导数据科学导论内容数据规约是组织着手限制其存储的数据量的过程。数据规约技术旨在减少原始数据集中的冗余,以便大量原始数据能够更有效地存储为缩减数据。首先应该强调的是,原创 2024-12-27 17:05:51 · 1236 阅读 · 0 评论 -
【大数据入门】数据预处理·数据清理
本篇主要着手于数据处理中的数据清洗数据清洗、数据集成、数据变换、数据规约其中数据清洗就是清洗脏数据,包括数据填充噪声处理数据删除本文到这里就结束啦~~原创 2024-10-16 15:13:39 · 2525 阅读 · 0 评论 -
【大数据入门】第四章·特征工程与探索性分析
本文到这里就结束啦~~目前已完成:大数据入门、数据表示与存储、数据预处理、建模分析期待您的关注~~🥰🥰猫猫陪你永远在路上💪💪下一篇我们将进入数据可视化部分~~~原创 2024-12-27 22:54:51 · 917 阅读 · 0 评论 -
【大数据入门】数据预处理·数据集成
体量大、产生速度快、价值量大但密度低、多样性其中最重要的特点是:价值总量大但密度低(以PB为大数据的界限)正因为数据存在价值量大但密度低的特点,因此如何提取数据中的有价值部分就显得非常重要这也就是数据科学这门课中最重要的一部分————数据清理提前处理数据,提高数据的质量,为后续分析数据做准备。数据清洗、数据集成、数据变换、数据归约完整性、正确性、一致性、可靠性。针对标准提出的方法:数据清洗:提升完整性和正确性(清洗缺失数据、纠正错误数据)。数据集成:确保一致性和完整性。原创 2024-11-05 19:25:43 · 1590 阅读 · 0 评论 -
【大数据入门】数据预处理·数据规约(主成分分析法PCA)
在进入这一篇文章之前,我希望大家看看另外两篇文章【数据处理】数据预处理·数据清理-CSDN博客【数据处理】数据预处理·数据集成-CSDN博客【数据处理】数据预处理·数据变换(熵与决策树)-CSDN博客1、大数据中最重要的部分就是数据处理2、数据采集、数据存储、数据预处理、数据分析、数据可视化、决策数据预处理4、数据预处理目的是提高数据的质量,使得我们能使用更高质量的数据进行后续处理数据清洗、数据集成、数据变换、数据规约1、缺失值处理2、异常值处理(噪声处理)1、数据集成中最大的问题就是数据冗余。原创 2024-11-14 11:47:41 · 1899 阅读 · 0 评论 -
【大数据入门】第一二章·大数据与数据表示与存储
【数据处理与分析】专栏主要专注于数据处理和数据分析。专栏中的【数据科学导论】部分是对整个大数据科学所有技术(包括数据处理、数据分析)的一个概论,适用于想要快速入门大数据的友友们🥰🥰~~~数据科学导论——研究数据科学数据科学——研究大数据处理大数据处理过程——采集、表示与存储、预处理、建模分析、可视化、决策大数据处理过程指导数据科学导论内容【数据科学导论】持续更新中🎢🎢🎢大数据是一种数据规模大到在数据的获取管理,存储处理,分析计算都远远超过传统数据库软件工 具处理范围的数据集合。原创 2024-12-23 16:24:30 · 1607 阅读 · 0 评论 -
【深度学习基础】一篇入门模型评估指标(分类篇)
本篇针对的是刚刚接触机器学习的友友~~在猫猫刚刚入门机器学习时,有位学长问我,召回率是什么?猫猫那是一脸懵逼,然后他又来了三连问。准确率是什么?精准率是什么?有什么曲线评估模型性能吗?在当时猫猫的脑海中,模型好坏不就是看他预测准了多少个样本,准确率多少吗?哪来那么多东西,哈哈哈哈哈哈,机器学习还是好玩的。想到很多刚刚入门的友友也可能苦恼于模型评估指标,猫猫便写了这篇博客,希望能给大家带来点帮助。模型评估是指在机器学习中,对于一个具体方法输出的最终模型,使用一些指标和方法来评估它的泛化能力。原创 2024-11-27 21:12:08 · 1233 阅读 · 0 评论 -
【神经网络结构的组成】一篇弄懂池化层Pooling
池化Pooling是卷积神经网络中常见的一种操作,其本质是降维。在卷积层之后,通过池化来降低卷积层输出的特征维度,减少网络参数和计算成本的同时,降低过拟合现象。Pooling层是模仿人的视觉系统对数据进行降维,人眼在观察复杂场景时,通常会通过关注最显著的特征来处理视觉信息,而Pooling层的功能也正是抽取图像中最重要的信息并进行有效降维。池化的本质是降维,池化的原则是提取最重要的信息。基于如何提取最重要的信息有许多不同的观点,因此就产生了许多不同池化层。原创 2024-10-09 10:32:23 · 2765 阅读 · 0 评论 -
【深度学习基础】一篇带你走入机器翻译的前世今生(规则、统计和神经网络)
机器翻译历经规则驱动(RBMT)、统计学习(SMT)与神经网络(NMT)三大阶段。早期RBMT依赖人工编写语言规则,难以应对复杂表达;90年代SMT基于双语语料统计词对齐概率,但分治策略导致误差累积。2014年后,NMT以端到端架构(如Seq2Seq+注意力机制)实现语义连续表示,Transformer模型进一步融合并行计算与自注意力,成为主流。尽管NMT流畅度逼近人类水平,仍受困于低资源语言数据匮乏与可解释性不足。未来需探索小样本学习、多模态融合等路径,推动机器翻译向更智能、泛化的方向演进。原创 2025-02-26 18:04:14 · 1453 阅读 · 35 评论 -
【深度学习基础】对抗学习(Adversarial learning)
本系列文章,重点帮助大家理解机器学习中的各种学习包括多任务学习、联邦学习、对比学习等。今天,猫猫来讲讲对抗学习,希望可以和大家一起打开对抗学习的大门!机器学习这一技术自出现之始就以优异的性能应用于各个领域。近年来,随着机器学习的快速发展与广泛应用,这一领域更是得到前所未有的蓬勃发展。目前, 机器学习在计算机视觉、语音识别、自然语言处理等复杂任务中取得了公认的成果,已经被广泛应用于自动驾驶、人脸识别等领域。原创 2024-11-28 18:35:08 · 4024 阅读 · 0 评论 -
【深度学习基础】一篇弄懂PyPI和pip(呕心沥血版)
在 Python 生态中,PyPI(Python Package Index)和 pip 是开发者的核心工具。PyPI 是一个庞大的软件包仓库,汇集了从数据处理到机器学习的各种 Python 库;pip 则是包管理工具,帮助开发者轻松安装、更新和管理这些库。掌握 PyPI 和 pip 的使用,是提升开发效率的关键。初学者可以通过 pip 快速安装依赖包,而资深开发者则可以将自己的项目发布到 PyPI,与全球开发者共享。本文将深入解析 PyPI 和 pip 的功能,从基础操作到高级技巧,帮助你全面掌握这些工具原创 2025-03-06 12:11:00 · 1828 阅读 · 59 评论 -
【神经网络结构的组成】CNN的卷积核通道数、卷积输出的通道数、步长与填充之间的关系(附多通道卷积)
本文介绍了卷积神经网络(CNN)中卷积核通道数、卷积输出通道数、步长与填充之间的关系,重点讨论了多通道卷积的应用与原理。首先,卷积核的通道数决定了每个卷积核与输入图像每个通道的卷积计算方式;而卷积输出的通道数则由卷积核的数量决定,每个卷积核生成一个输出通道。步长控制卷积操作的滑动速度,从而影响输出的空间尺寸,步长越大,输出尺寸越小。填充用于在输入图像边界添加额外像素,帮助保持输出尺寸不变。文章还介绍了如何通过调整这些参数来优化卷积层的表现,并展示了多通道卷积在处理彩色图像和多维数据时的重要性。原创 2025-02-19 23:39:25 · 2093 阅读 · 0 评论 -
【深度学习基础】一文弄懂人工智能中的鲁棒性
英文为Robustness(承受故障和干扰的能力),是许多复杂系统(包括复杂网络)的关键属性。复杂网络的鲁棒性研究对许多领域都非常重要。本文着重介绍了鲁棒性的基本定义、命名起源、分类区别、提升方法和具体应用。如果想要学习更多人工智能的知识,大家可以点个关注并订阅,持续学习、天天进步。原创 2024-10-25 21:15:37 · 1694 阅读 · 0 评论 -
【神经网络结构的组成】深入理解 卷积与卷积核
我们称 (f*g)(n) 为 f,g 的卷积其连续的定义为:其离散的定义为:t以及n-t存在,也就是说两者相加永远为n一边为t;另一边为n-t到这里,大家可能就知道这个卷积中的卷是什么意思啦~~~~拿一个经典例子卷毛巾:1、卷毛巾就是将毛巾的其中一个角和另一个角连接起来2、在卷积中就是t和n-t连接起来深度学习中的概念,执行的是深度学习中的卷积操作不需要翻转的卷积翻转+乘积求和乘积求和又叫滤波又叫滤波器如果想要学习更多深度学习知识,大家可以点个关注并订阅,持续学习、天天进步。原创 2024-11-01 22:28:21 · 2115 阅读 · 0 评论