CCF202112_1

问题描述

试题编号:202112-1
试题名称:序列查询
时间限制:300ms
内存限制:512.0MB
问题描述:

题目背景

西西艾弗岛的购物中心里店铺林立,商品琳琅满目。为了帮助游客根据自己的预算快速选择心仪的商品,IT 部门决定研发一套商品检索系统,支持对任意给定的预算 x,查询在该预算范围内(≤x)价格最高的商品。如果没有商品符合该预算要求,便向游客推荐可以免费领取的西西艾弗岛定制纪念品。

假设购物中心里有 n 件商品,价格从低到高依次为 A1,A2⋯An,则根据预算 x 检索商品的过程可以抽象为如下序列查询问题。

题目描述

A=[A0,A1,A2,⋯,An] 是一个由 n+1 个 [0,N) 范围内整数组成的序列,满足 0=A0<A1<A2<⋯<An<N。(这个定义中蕴含了 n 一定小于 N。)

基于序列 A,对于 [0,N) 范围内任意的整数 x,查询 f(x) 定义为:序列 A 中小于等于 x 的整数里最大的数的下标。具体来说有以下两种情况:

  1. 存在下标 0≤i<n 满足 Ai≤x<Ai+1

此时序列 A 中从 A0 到 Ai 均小于等于 x,其中最大的数为 Ai,其下标为 i,故 f(x)=i。

  1. An≤x

此时序列 A 中所有的数都小于等于 x,其中最大的数为 An,故 f(x)=n。

令 sum(A) 表示 f(0) 到 f(N−1) 的总和,即:
sum(A)=∑i=0N−1f(i)=f(0)+f(1)+f(2)+⋯+f(N−1)

对于给定的序列 A,试计算 sum(A)。

输入格式

从标准输入读入数据。

输入的第一行包含空格分隔的两个正整数 n 和 N。

输入的第二行包含 n 个用空格分隔的整数 A1,A2,⋯,An。

注意 A0 固定为 0,因此输入数据中不包括 A0。

输出格式

输出到标准输出。

仅输出一个整数,表示 sum(A) 的值。

样例1输入

3 10
2 5 8

Data

样例1输出

15

Data

样例1解释

A=[0,2,5,8]

i0123456789
f(i)0011122233

如上表所示,sum(A)=f(0)+f(1)+⋯+f(9)=15。

考虑到 f(0)=f(1)、f(2)=f(3)=f(4)、f(5)=f(6)=f(7) 以及 f(8)=f(9),亦可通过如下算式计算 sum(A):
sum(A)=f(0)×2+f(2)×3+f(5)×3+f(8)×2

样例2输入

9 10
1 2 3 4 5 6 7 8 9

Data

样例2输出

45

Data

子任务

50% 的测试数据满足 1≤n≤200 且 n<N≤1000;

全部的测试数据满足 1≤n≤200 且 n<N≤107。

提示

若存在区间 [i,j) 满足 f(i)=f(i+1)=⋯=f(j−1),使用乘法运算 f(i)×(j−i) 代替将 f(i) 到 f(j−1) 逐个相加,或可大幅提高算法效率。

题解

#include<bits/stdc++.h>

using namespace std;

int main()
{
	int n, N;
	cin >> n >> N;
	int temp, value = 0, index = 0, sum = 0;
	for (int i = 0; i < n; i++)
	{
		cin >> temp;
		while (index < temp)
		{
			sum += value;
			index++;
		}
		value++;
	}
	while (index < N)
	{
		sum += value;
		index++;
	}
	cout << sum << endl;
	return 0;
}

ccf_offline_stage1_train.csv是中国计算机大赛(CCF)的离线阶段一训练数据集。该数据集是CCF比赛组织方提供给参赛选手进行机器学习和数据挖掘训练的文件。 此数据集包含了2016年至2017年之间顾客线下购买行为的信息。具体而言,它包含了购买券的用户ID、商户ID、交易时间、优惠券ID以及是否使用优惠券等信息。 通过这个数据集,我们可以进行很多有趣的分析和预测。例如,我们可以利用用户的购买行为,预测用户对不同商户的购买意愿,从而帮助商户制定更加精准的促销策略。我们还可以通过分析使用优惠券与不使用优惠券之间的购买行为差异,评估优惠券的推广效果。此外,我们可以根据用户的购买行为数据,对用户进行分类,从而进一步了解不同类型用户的消费习惯。 当然,使用这个数据集进行分析也存在一些挑战和限制。首先,它只包含了线下购买行为的信息,而忽略了线上购买行为。其次,数据集中的一些特征可能存在缺失或错误,需要在使用前进行数据清洗和预处理。此外,数据集的规模可能相对较小,可能需要进一步收集更多样本进行分析和训练。 总之,ccf_offline_stage1_train.csv是一个有价值的数据集,可以被用来进行用户行为分析、预测和商业决策支持。通过深入挖掘这些数据,我们可以更好地理解顾客行为,并制定更有效的营销策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值