问题描述
试题编号: | 202112-1 | ||||||||||||||||||||||
试题名称: | 序列查询 | ||||||||||||||||||||||
时间限制: | 300ms | ||||||||||||||||||||||
内存限制: | 512.0MB | ||||||||||||||||||||||
问题描述: | 题目背景西西艾弗岛的购物中心里店铺林立,商品琳琅满目。为了帮助游客根据自己的预算快速选择心仪的商品,IT 部门决定研发一套商品检索系统,支持对任意给定的预算 x,查询在该预算范围内(≤x)价格最高的商品。如果没有商品符合该预算要求,便向游客推荐可以免费领取的西西艾弗岛定制纪念品。 假设购物中心里有 n 件商品,价格从低到高依次为 A1,A2⋯An,则根据预算 x 检索商品的过程可以抽象为如下序列查询问题。 题目描述A=[A0,A1,A2,⋯,An] 是一个由 n+1 个 [0,N) 范围内整数组成的序列,满足 0=A0<A1<A2<⋯<An<N。(这个定义中蕴含了 n 一定小于 N。) 基于序列 A,对于 [0,N) 范围内任意的整数 x,查询 f(x) 定义为:序列 A 中小于等于 x 的整数里最大的数的下标。具体来说有以下两种情况:
此时序列 A 中从 A0 到 Ai 均小于等于 x,其中最大的数为 Ai,其下标为 i,故 f(x)=i。
此时序列 A 中所有的数都小于等于 x,其中最大的数为 An,故 f(x)=n。 令 sum(A) 表示 f(0) 到 f(N−1) 的总和,即: 对于给定的序列 A,试计算 sum(A)。 输入格式从标准输入读入数据。 输入的第一行包含空格分隔的两个正整数 n 和 N。 输入的第二行包含 n 个用空格分隔的整数 A1,A2,⋯,An。 注意 A0 固定为 0,因此输入数据中不包括 A0。 输出格式输出到标准输出。 仅输出一个整数,表示 sum(A) 的值。 样例1输入 Data 样例1输出 Data 样例1解释A=[0,2,5,8]
如上表所示,sum(A)=f(0)+f(1)+⋯+f(9)=15。 考虑到 f(0)=f(1)、f(2)=f(3)=f(4)、f(5)=f(6)=f(7) 以及 f(8)=f(9),亦可通过如下算式计算 sum(A): 样例2输入 Data 样例2输出 Data 子任务50% 的测试数据满足 1≤n≤200 且 n<N≤1000; 全部的测试数据满足 1≤n≤200 且 n<N≤107。 提示若存在区间 [i,j) 满足 f(i)=f(i+1)=⋯=f(j−1),使用乘法运算 f(i)×(j−i) 代替将 f(i) 到 f(j−1) 逐个相加,或可大幅提高算法效率。 |
题解
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n, N;
cin >> n >> N;
int temp, value = 0, index = 0, sum = 0;
for (int i = 0; i < n; i++)
{
cin >> temp;
while (index < temp)
{
sum += value;
index++;
}
value++;
}
while (index < N)
{
sum += value;
index++;
}
cout << sum << endl;
return 0;
}