什么是模糊测试?

1422 篇文章 7 订阅
216 篇文章 2 订阅
本文介绍了模糊测试的基本概念,强调了其在发现底层缺陷中的作用。文章以AFL开源工具为例,详细阐述了模糊测试的流程,包括测试用例的生成算法(基于变异和基于生成)以及AFL的工作机制,如代码覆盖率驱动的测试用例优化。此外,还提到了AFL的适用场景和变异方式,并分享了其在实际应用中的效果。
摘要由CSDN通过智能技术生成

背景:近年来,随着信息技术的发展,各种新型自动化测试技术如雨后春笋般出现。其中,模糊测试(fuzz testing)技术开始受到行业关注,它尤其适用于发现未知的、隐蔽性较强的底层缺陷。这里,我们将结合AFL开源工具,对模糊测试的基本概念和流程进行说明。

01 模糊测试的定义

模糊测试的核心思想是,根据一定的规则,自动或半自动生成的随机数据,然后将产生的数据输入到程序中,并监视程序是否有异常出现,以发现可能的程序错误,如内存泄漏、系统崩溃、未处理的异常等。

当一个模糊测试生成器开始启动并运行后,它将自己寻找漏洞,并不需要人工干预,非常有助于发现传统测试方法或手动审计无法检测到的缺陷。

模糊测试包括几个基本的测试步骤:确定被测系统->给定输入->生成测试用例->灌入用例进行测试->监控目标程序情况->输出崩溃日志。

图片

图一:模糊测试流程

02 测试用例生成算法

模糊测试用例的生成算法主要有两种:

1)基于变异:根据已知数据样本,通过变异的方法生成新的测试用例;

例如对一个图片文件进行变异,用户需要提供一个相应格式的图片文件,变异生成器会基于该图片进行变异。著名的开源模糊测试工具AFL就是基于变异生成用例。

2)基于生成:根据已知的协议或接口规范,建模并生成测试用例;

某些程序可能对输入有严格的规则要求,例如必须是SQL语句、或者给定的协议规范等。测试引擎需要在测试前预先学习对应的语法语义规则,对其进行建模,在此基础上才能变异出有效的测试用例。

03 测试工具介绍

当前已经有很多开源的模糊测试工具,其中使用较为广泛的是AFL(American Fuzzy Lop),由谷歌工程师迈克尔·扎里斯基(Michal Zalewski)开发,该项目已经由Github托管。

在执行前,需要对被测程序源码进行插桩

(instrumentation),以获知被测程序的运行信息。在执行过程中,它通过记录输入样本的代码覆盖率,从而调整输入样本以提高覆盖率,增加发现漏洞的概率。其工作流程大致如下:

  1. 从源码编译程序时进行插桩,以记录代码覆盖率;

  2. 选择一些输入文件,作为初始测试集加入输入队列;

  3. 将队列中的文件按一定的策略进行“突变”;

  4. 如果经过变异文件更新了覆盖范围,则将其保留添加到队列中;

  5. 上述过程一直循环进行,期间触发crash的文件会被记录下来。

图片

图二:AFL模糊测试的基本流程

AFL的优点是可以轻松部署,配置相对简单,测试效率相对较高。原生的AFL仅适配于C/C++程序的测试,不过目前已经衍生出很多分支,用于适配其他语言的模糊测试,如针对JAVA程序的Kelinci等。

04 用例变异方式

AFL是采用遗传算法,基于变异生成的测试用例,变异的主要类型有下面这几种:

· Bit flip,按位翻转,1变为0,0变为1

· Arithmetic,整数加/减算术运算

· Interest,把一些特殊内容替换到原文件中

· Dictionary,把自动生成或用户提供的token替换或插入到原文件中

· Havoc,又称“大破坏”,是前面几种变异的组合

· Splice,又称“绞接”,将两个文件拼接起来得到一个新文件

AFL需要一些初始输入数据(也称种子文件)作为模糊测试的起点,这些输入可以是毫无意义的数据。AFL通过上述方式自动确定文件的格式和结构。当输入队列中的全部文件都完成变异测试,则完成了一个Cycle(周期),如果用户不停止执行,种子文件将会不断变异下去。

图片

图三:AFL监控台,显示当前为Cycle 6, Splice 12阶段

扎里斯基曾经给出一个有趣的例子,对djpeg(一个Linux系统上的图像处理程序)进行模糊测试,在仅初始输入“hello”字符串的情况下,最后凭空生成了大量jpeg的图像。

综上所述,我们简要介绍了模糊测试的概念以及开源工具AFL的测试流程,欢迎持续关注。

最后: 为了回馈铁杆粉丝们,我给大家整理了完整的软件测试视频学习教程,朋友们如果需要可以自行免费领取 【保证100%免费】
在这里插入图片描述
这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

全套资料获取方式:

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值