一,感知模型的网络架构如下:
运行model.summary()
后,你可以看到每一层的详细输出形状和参数数量。以下是部分输出示例:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 25, 4, 32) 1184
max_pooling2d (MaxPooling2D (None, 13, 2, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 13, 2, 64) 18496
max_pooling2d_1 (MaxPooling (None, 7, 1, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 7, 1, 128) 73856
max_pooling2d_2 (MaxPooling (None, 4, 1, 128) 0
_________________________________________________________________
flatten (Flatten) (None, 512) 0
_________________________________________________________________
dense (Dense) (None, 128) 65664
_________________________________________________________________
dropout (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 4) 516
=================================================================
Total params: 159,712
Trainable params: 159,712
Non-trainable params: 0