3.25日记

一,感知模型的网络架构如下:

运行model.summary()后,你可以看到每一层的详细输出形状和参数数量。以下是部分输出示例:

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 25, 4, 32)         1184      
 max_pooling2d (MaxPooling2D  (None, 13, 2, 32)        0         
_________________________________________________________________
 conv2d_1 (Conv2D)           (None, 13, 2, 64)         18496     
 max_pooling2d_1 (MaxPooling  (None, 7, 1, 64)         0         
_________________________________________________________________
 conv2d_2 (Conv2D)           (None, 7, 1, 128)         73856     
 max_pooling2d_2 (MaxPooling  (None, 4, 1, 128)        0         
_________________________________________________________________
 flatten (Flatten)           (None, 512)               0         
_________________________________________________________________
 dense (Dense)               (None, 128)               65664     
_________________________________________________________________
 dropout (Dropout)           (None, 128)               0         
_________________________________________________________________
 dense_1 (Dense)             (None, 4)                 516       
=================================================================
Total params: 159,712
Trainable params: 159,712
Non-trainable params: 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值