高低位交换
题目描述
给出一个小于 2 32 2^{32} 232 的非负整数。这个数可以用一个 32 32 32 位的二进制数表示(不足 32 32 32 位用 0 0 0 补足)。我们称这个二进制数的前 16 16 16 位为“高位”,后 16 16 16 位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数 1314520 1314520 1314520 用二进制表示为 0000 0000 0001 0100 0000 1110 1101 1000 0000\,0000\,0001\,0100\,0000\,1110\,1101\,1000 00000000000101000000111011011000(添加了 11 11 11 个前导 0 0 0 补足为 32 32 32 位),其中前 16 16 16 位为高位,即 0000 0000 0001 0100 0000\,0000\,0001\,0100 0000000000010100;后 16 16 16 位为低位,即 0000 1110 1101 1000 0000\,1110\,1101\,1000 0000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数 0000 1110 1101 1000 0000 0000 0001 0100 0000\,1110\,1101\,1000\,0000\,0000\,0001\,0100 00001110110110000000000000010100。它即是十进制的 249036820 249036820 249036820。
输入格式
一个小于 2 32 2^{32} 232 的非负整数
输出格式
将新的数输出
样例 #1
样例输入 #1
1314520
样例输出 #1
249036820
思路
这道题目的要求是将一个二进制的数,将前面16位和后面的16位对换,这里我们可以先简化一下问题,假设一个十进制的数1234,将前面的两位和后面的两位对换得到数字3412,那我们可以先求出前面的部分啊,和后面的部分b,然后我们将这两个数字组合在一起就好了,答案就是ans=b*10+a;这道题就是将我们这个十进制的例子转化为二进制即可。
代码
#include <bits/stdc++.h>
using namespace std;
#define debug(x) cout<<#x<<" = "<<endl
#define endl "\n"
typedef long long LL;
const int N = 1e5+5;
int main()
{
LL n;
cin>>n;
LL ans;
LL mod=(LL)pow(2,16);
ans=(n%mod)*mod+(n/mod);
cout<<ans;
return 0;
}