洛谷P1100 高低位交换

洛谷P1100 高低位交换

高低位交换

题目描述

给出一个小于 2 32 2^{32} 232 的非负整数。这个数可以用一个 32 32 32 位的二进制数表示(不足 32 32 32 位用 0 0 0 补足)。我们称这个二进制数的前 16 16 16 位为“高位”,后 16 16 16 位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。

例如,数 1314520 1314520 1314520 用二进制表示为 0000   0000   0001   0100   0000   1110   1101   1000 0000\,0000\,0001\,0100\,0000\,1110\,1101\,1000 00000000000101000000111011011000(添加了 11 11 11 个前导 0 0 0 补足为 32 32 32 位),其中前 16 16 16 位为高位,即 0000   0000   0001   0100 0000\,0000\,0001\,0100 0000000000010100;后 16 16 16 位为低位,即 0000   1110   1101   1000 0000\,1110\,1101\,1000 0000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数 0000   1110   1101   1000   0000   0000   0001   0100 0000\,1110\,1101\,1000\,0000\,0000\,0001\,0100 00001110110110000000000000010100。它即是十进制的 249036820 249036820 249036820

输入格式

一个小于 2 32 2^{32} 232 的非负整数

输出格式

将新的数输出

样例 #1

样例输入 #1

1314520

样例输出 #1

249036820

思路

这道题目的要求是将一个二进制的数,将前面16位和后面的16位对换,这里我们可以先简化一下问题,假设一个十进制的数1234,将前面的两位和后面的两位对换得到数字3412,那我们可以先求出前面的部分啊,和后面的部分b,然后我们将这两个数字组合在一起就好了,答案就是ans=b*10+a;这道题就是将我们这个十进制的例子转化为二进制即可。

代码

#include <bits/stdc++.h>
using namespace std;
#define debug(x) cout<<#x<<" = "<<endl
#define endl "\n"
typedef long long LL;

const int N = 1e5+5;

int main()
{
    LL n;
    cin>>n;
    LL ans;
    LL mod=(LL)pow(2,16);
    ans=(n%mod)*mod+(n/mod);
    cout<<ans;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想要AC的dly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值