滴水逆向
- 进制
1>.进制的定义:
十进制的定义:由十个符号组成,分别是0,1,2,3,4,5,6,7,8,9,逢十进一。
八进制的定义:由八个符号组成,分别是0,1,2,3,4,5,6,7,逢八进一。
十六进制的定义:由十六个符号组成,分别是0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,逢十六进一。
二进制:
0 | 1 |
10 | 11 |
100 | 101 |
110 | 111 |
1000 | 1001 |
1010 | 1011 |
1100 | 1101 |
1110 | 1111 |
10000 | 10001 |
10010 | 10011 |
八进制:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |
60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 |
110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 |
- .计算机与数字的关系:
- 计算机中的任何信息,比如一张图片,一部视频或一首歌曲,最终都是以二进制的形式进行存储的。
- 计算机采用二进制的形式存储数据,主要有两方面的原因:二进制就足够,受硬件制约。
- 由于二进制书写复杂,所以在很多软件中,都将计算机中的数据用十六进制来表示,十六进制就是二进制的简写形式。
一个十六进制数==四个二进制数
二进制与十六进制间的映射:
0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
8 | 9 | A | B | C | D | E | F |
1进制的定义:由一个符号组成,为1,逢一进一
1
11
111
1111
11111
111111
1111111
11111111
111111111
2进制的定义:由两个符号组成,分别是0,1,逢二进一。
0 1
10 11
20 21
100 101
110 111
1000 1001
3进制的定义:由三个符号组成,分别是0,1,2,逢三进一。
0 | 1 | 2 |
10 | 11 | 12 |
20 | 21 | 22 |
100 | 101 | 102 |
110 | 111 | 112 |
120 | 121 | 122 |
200 | 201 | 202 |
210 | 211 | 212 |
220 | 221 | 222 |
1000 | 1001 | 1002 |
1010 | 1011 | 1012 |
设由2,0,1组成三进制,逢三进一。
2 | 0 | 1 |
02 | 00 | 01 |
12 | 10 | 11 |
022 | 020 | 021 |
002 | 000 | 001 |
012 | 010 | 011 |
- 数据宽度
- 在计算机中,由于受硬件的制约,数据都是有长度的(我们称为超过最多宽度的数据会被丢弃)。
- 4位宽度表示,假设计算机只能存储在4位2进制数
0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
8 | 9 | A | B | C | D | E | F |
- 几个重要的计量单位:
Byte 字节 8bit
WORD 字 16bit 2字节
DWOED 双字 32bit 4字节
- 逻辑运算
- 或(or |):只要有一个为1就是1
1011000101
+ 1001100110
1011100111
- 与(and &):两个都是1才是1
1011011101
+ 1001100110
1001000100
- 异或(xor ^):不一样为1
1011000101
+ 1001100110
0010100011
- 非(not !): 1是0,0是1
1001100110
Not
0110011001