基于MATLAB的车牌识别

该设计利用MATLAB R2022a进行车牌识别,包括图像预处理(灰度化、直方图均衡化、边缘检测)、车牌定位、字符分割和识别等步骤。通过图像增强技术提高图像质量,运用边缘检测算法找到车牌边缘,进一步进行车牌定位和矫正,最终识别出车牌号码。整个流程构建了一个完整的车牌识别系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本设计使用MATLAB R2022a软件进行车牌识别。

图像预处理:对输入的图像进行预处理,先灰度化处理,再是直方图,最后边缘检测。

车牌定位:利用检测提取的结果,对图像中的车牌位置进行定位,接着将图片进行矫正。

字符分割:对车牌上的字符进行分割,得到单个字符的图像。

字符识别:将分割后的字符图像提取出来,得到车牌号码。

这些技术可以结合使用,构建一个完整的车牌识别系统。

1.图像增强技术

图像增强技术是指通过各种算法和方法,对图像进行改进和优化,使其更加清晰、鲜明、易于观察和分析。本课题的图像增强技术包括以下几种:

(1)灰度处理:通过调整图像亮度的分布,使原本过暗或过亮的图像区域变得更加明亮或更加暗淡。

(2)直方图均衡化:通过调整像素值的分布,增加图像的对比度,从而使画面更清晰。

(3)噪声去除:通过去除图像中的噪声,使图像更清晰,更容易观察和分析。

这些技术往往都是基于图像处理算法和数学模型实现的,可以应用于各种领域,如医学影像分析、安防监控、图像识别等。

2.边缘检测

边缘检测是一种用于寻找图像中物体边缘的处理技术。边缘是图像中不同颜色或灰度之间的快速变化。在计算机视觉和图像处理领域中,边缘检测是一项基本技能,可用于图像分析、物体识别和分割等任务。

选用Robert算法对转换得到的灰度图像做边缘检测,使用Roberts算子对图像进行边缘检测,然后进行了腐蚀操作,接着使用矩形结构元素进行平滑处理,最后通过二值化并移除小对象来得到图像的轮廓,如图:

 

3.车牌定位与矫正

为了接下来的分割字符,需要对做好定位与对倾斜的车牌作矫正处理,而且在获取到的车牌图像中的字符也有着不同程度的倾斜。

 4.识别系统与识别效果

识别系统包括图像采集、车牌定位、车牌字符分割、字符识别等多个模块。首先,系统会通过摄像头或者其他设备采集车辆图像。接着,车牌定位模块会对图像进行处理,识别出汽车牌照的区域。然后,将汽车牌照划分为单个字符的图像模块。最后,字符识别模块对每个字符图像块进行识别,并输出识别结果。

 

5.主程序如下:

function varargout = GUI(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name',       mfilename, ...

                   'gui_Singleton',  gui_Singleton, ...

                   'gui_OpeningFcn', @GUI_OpeningFcn, ...

                   'gui_OutputFcn',  @GUI_OutputFcn, ...

                   'gui_LayoutFcn',  [] , ...

                   'gui_Callback',   []);

if nargin && ischar(varargin{1})

    gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

    gui_mainfcn(gui_State, varargin{:});

end

function GUI_OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

global I

global Icp

global threshold

global qingxiejiao

global xiuzhenghanzi

global xiuzhengzimu

global xiuzhengzm_sz_1

global xiuzhengzm_sz_2

global xiuzhengshuzi_1

global xiuzhengshuzi_2

global xiuzhengshuzi_3

global tiaozhengbili

guidata(hObject, handles);

function varargout = GUI_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

function duqu_Callback(hObject, eventdata, handles)

global I

global Img_0

global Img_1

axes(handles.YuanTuXiang)

[fn,pn,~] = uigetfile('*.jpg','请选择所要识别的图片');   

I = imread([pn fn]); % 读取图像 参数为图像名称和图像路径               =====1

Img_0 = rgb2gray(I); %*****灰度处理                                  =====2

Img_1 = edge(Img_0,'roberts');    %********roberts算子边缘检测       =====3

imshow(I)

title('原图像');

### 使用MATLAB实现蓝色车牌识别 #### 图像预处理 为了有效识别蓝色车牌,在图像预处理阶段,可以先转换颜色空间以便更好地分离背景和其他物体。通常会将RGB色彩模型转为HSV或YCbCr色彩模型来增强特定颜色的选择性[^1]。 ```matlab % 将输入图片从RGB转化为HSV颜色空间 img = imread('blue_license_plate.jpg'); hsv_img = rgb2hsv(img); ``` #### 车牌定位 针对蓝色车牌的颜色特性设定阈值范围,从而提取出可能属于车牌区域的部分。这一步可以通过二值化操作完成,即设置合理的Hue(色调),Saturation(饱和度), Value(亮度)区间筛选目标颜色[^3]。 ```matlab lower_blue = [0.5, 0.7, 0]; % 设定较低的蓝调界限 upper_blue = [0.7, 1, 1]; % 设定较高的蓝调界限 mask = (hsv_img(:,:,1)>lower_blue(1)) & ... (hsv_img(:,:,1)<upper_blue(1)) & ... (hsv_img(:,:,2)>lower_blue(2)) & ... (hsv_img(:,:,2)<upper_blue(2)) & ... (hsv_img(:,:,3)>lower_blue(3)) & ... (hsv_img(:,:,3)<upper_blue(3)); plate_region = img .* uint8(mask); % 应用掩码获取潜在车牌区 ``` #### 字符分割与识别 一旦锁定了疑似车牌的位置之后,下一步就是对其进行细化处理并准备送入OCR引擎做最终的文字解析工作。对于字符间的分隔线检测以及单个字符轮廓捕捉均能辅助提高整体精度[^2]。 ```matlab grayPlate = rgb2gray(plate_region); binaryPlate = imbinarize(grayPlate,'global'); % 全局自适应二值化 morphedPlate = bwmorph(binaryPlate,'thin',Inf); % 形态学细化 stats = regionprops(morphedPlate,'BoundingBox','Area'); chars = []; for i=1:length(stats) bb = stats(i).BoundingBox; area = stats(i).Area; if area > minCharSize && area < maxCharSize % 过滤掉不符合大小条件的对象 charImg = morphedPlate(round(bb(2)):round(bb(2)+bb(4)), round(bb(1)):round(bb(1)+bb(3))); chars = cat(3,chars,charImg); end end ``` 上述代码片段展示了如何利用MATLAB工具箱中的函数来进行基本的蓝色车牌识别任务。实际应用中还需要考虑更多细节调整参数以达到更好的性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值