自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 数据结构中线性表的操作

双链表只需要每个节点加一个指向前驱的指针就行。数据结构中的线性表分为顺序表和链表两种,本文主要介绍两种表的插入删除查找操作。插入删除时还需要考虑前驱指针。

2024-07-04 21:32:54 152

原创 豆瓣top250的电影数据爬取

爬虫我们用requests模块爬取,数据处理用xpath方法,再写到csv文件里面就行。

2023-12-05 10:49:06 673 1

原创 模型的保存与测试

我们以上一篇文章的Letnet模型为例子来进行保存,这里我们主要是储存和加载模型参数,这样能有效节约空间。这里是通过模型后选出10个里面最大值的编号存在predicted中,然后再与其标签相对比。

2023-11-07 16:25:48 148

原创 手写体识别LeNet网络

定义Letnet网络模型,在卷积操作中使用Module提供的conv2d()函数(第一个参数代表输入灰度图数量,第二个代表输出特征图数量,第三个参数代表卷积核大小),池化操作则用max_pool12d()函数。transform函数是自定义进行数据预处理,包括将数据转化为tensor对象和进行数据归一化处理,在datasets.MNIST函数中,train='ture'代表训练集,‘false’代表测试集。训练函数,我们每运行1000次打印损失值,一共训练两次。然后就是将数据转化到GPU上运算。

2023-10-27 18:51:06 192 1

原创 使用人工神经网络模型训练一个非线性回归

神经科学家们对大脑进行深人研究后,发现人脑的智能活动离不开脑内的物质基础,包括它的结构以及其中的生物、化学、电学作用。一般情况下,神经元的数目越多,连接数越多,神经网络的复杂度就越高,其所能表达复杂函数的能力就越强。因此,我们可以将神经元进行数学上的抽象,得到人工神经元模型。我们把神经元树突接收到的不同信号当作不同的x变量,并为不同的信号赋予不同的传输权重wi。多个人工神经元组成了人工神经网络,人工神经网络分为三层,输入层,隐含层,输出层。的一个组成部分,用于定义线性变换层。定义优化函数和损失函数。

2023-10-21 16:39:50 331 1

原创 使用pytorch训练一个线性回归

假设函数nn.Linear(in_features=1, out_features=1):这里线性回归输入和输出都是1个特征。sklearn是机器学习的一个包,这里我们导入是想用里面的make_regression来生成回归数据集。思路与上一篇文章是一样的,只不过我们这次可以使用pytorch里面所提供的函数来完成训练。损失函数: nn.MSELoss()nn提供了假设函数和损失函数。

2023-10-21 15:46:03 85 1

原创 训练一个简单的线性回归模型

训练一个简单的线性回归模型,在代码实现上分成了几个部分,构建数据集,构建数据加载器,假设函数,损失函数,优化方法。这里我们使用梯度下降法使得损失值减少。生成回归数据 来构建一个数据集。scatter函数绘制散点图。plot函数绘制折线图。

2023-10-10 09:28:42 305 1

原创 pytorch中的自动微分

【代码】pytorch中的自动微分。

2023-10-07 21:11:33 122 1

原创 Pytroch中的一个简单的梯度下降优化

假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。因此,下山的路径就无法确定,必须利用自己周围的信息一步一步地找到下山的路。怎么做呢,首先以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着下降方向走一步,然后又继续以当前位置为基准,再找最陡峭的地方,再走直到最后到达最低处;这个过程先简单的可以看成是例如在F=x**2 +x 这个方程所描绘的山谷的某个点一直向下走,每一步的方向就是每一步所在该点的梯度值。梯度下降法的基本思想可以类比为一个下山的过程。

2023-10-07 21:09:54 94 1

原创 张量的拼接,索引,形状操作

stack是叠加哪个维度的,就哪个维度当成一个元素一样叠加成一个元素;[2,3,4],[2,3,4]的两个张量叠加第3维度即dim=2即1,2维度不动,的第3维度的每一行相互叠加,然后第3维变成[2,4]张量变成[2,3,2,4]cat是直接把两个张量里面的元素拼接起来:[2,3,4],[2,3,4]的两个张量拼接第3维度即dim=2结果是[2,3,8]张量的形状操作这里介绍几个函数。

2023-10-06 15:49:21 129 1

原创 张量的基础运算

然后下面包括张量一些稍高级的运算。这里介绍一些张量的基本运算。

2023-10-06 15:12:49 131 1

原创 pytorch中张量的基本创建

pytorch中一些简单的张量创建

2023-09-20 20:37:11 143 1

原创 将输入的一个正整数分解质因数

先判断是否是除数,再判断该除数是否是素数,如果是再在里面再加一个while循环判断该除数是否能否继续除。

2023-09-12 12:20:36 400

原创 更新后selenium自动化点击搜索按钮

现在selenium改了后只有find_element和find_elements两种函数,所以我们现在定位和点击导入。以淘宝为例定位标签我们使用By.ID,搜索按钮我们使用By.XPATH。

2023-04-08 16:55:42 1081 1

原创 python爬虫之爬取百度翻译

百度翻译爬取

2023-03-24 21:23:00 1133 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除