动态规划篇--代码随想录算法训练营第三十一天| 动态规划理论基础,509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯,62.不同路径,63. 不同路径 II

动态规划理论基础

1、动态规划刷题大纲

2、解题五部曲

1、确定dp数组以及下标的含义

  • 题目要求
  • 经验 + 题目要求
  • 分析问题的过程中,发现重复子问题

2、确定递推公式

3、dp数组如何初始化

  • 保证填表时不越界
  • 存在则赋值,不存在则要保证初始化值不干扰后续判断,如求max时初始化-0x3f3f3f3f

4、确定遍历顺序

  • 从前往后
  • 从后往前

5、返回值

509. 斐波那契数 

题目链接:力扣题目链接

讲解视频:

手把手带你入门动态规划 | leetcode:509.斐波那契数

题目描述:

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

解题思路:

1. 状态表示:
这道题可以「根据题目的要求」直接定义出状态表示:dp[i] 表示:第 i 个泰波那契数的值。


2. 状态转移方程:
题目已经非常贴心的告诉我们了:dp[i] = dp[i - 1] + dp[i - 2] 


3. 初始化:
从我们的递推公式可以看出, dp[i] 在i = 0 以及 i = 1 的时候是没有办法进行推导的,因
为 dp[-2] 或 dp[-1] 不是一个有效的数据。因此我们需要在填表之前,将 0, 1 位置的值初始化。题目中已经告诉我们 dp[0] = 0,dp[1] = 1 。


4. 填表顺序:
毫无疑问是「从左往右」


5. 返回值:
应该返回 dp[n] 的值。

代码:

class Solution {
public:
    int fib(int n) {
        if(n <= 1) return n;
        vector<int> dp(n+1);
        dp[0] = 0,dp[1] = 1;
        for(int i = 2; i <= n; i++)
            dp[i] = dp[i-1] + dp[i-2];
        return dp[n];
    }
};

70. 爬楼梯

题目链接:. - 力扣(LeetCode)

讲解视频:

带你学透动态规划-爬楼梯|LeetCode:70.爬楼梯)

题目描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

解题思路:

1. 状态表示:
这道题可以根据「经验 + 题目要求」直接定义出状态表示:
第一种:以 i 位置为结尾
dp[i] 表示:到达 i 位置时使用的方法个数。


2. 状态转移方程
根据最近的一步,分情况讨论:

  • 先到达 i - 1 的位置,接下来走一步走到 i 位置:dp[i - 1];
  • 先到达 i - 2 的位置,接下来走两步走到 i 位置:dp[i - 2]。

由于我们要求的是有多少种方法,因此状态转移方程就呼之欲出了: dp[i] = dp[i - 1]+ dp[i-2]。(同上边斐波那契数列)

3. 初始化:
从我们的递推公式可以看出,我们需要先初始化 i = 1以及 i = 2 位置的值。容易得到
dp[1] = 1,dp[2] = 2 。


4. 填表顺序:
根据「状态转移方程」可得,遍历的顺序是「从左往右」


5. 返回值:
根据「状态表示以及题目要求」,需要返回 dp[n] 位置的值。

代码:

class Solution {
public:
    int climbStairs(int n) {
        if(n <= 2) return n;
        vector<int> dp(n+1);
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++)
            dp[i] = dp[i-1]+dp[i-2];
        return dp[n];
    }
};

746. 使用最小花费爬楼梯

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯

题目描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

解题思路:

注意点:在这道题中,数组内的每一下标[0,n-1]表示的都是楼层,而顶楼的位置其实是在n的位置!

1. 状态表示:
这道题可以根据「经验 + 题目要求」直接定义出状态表示:
第一种:以 i 位置为结尾
dp[i] 表示:到达 i 位置时的最小花费。(注意:到达 i 位置的时候, i 位置的钱不需要
算上)


2. 状态转移方程
根据最近的一步,分情况讨论:

  • 先到达 i - 1 的位置,然后支付 cost[i - 1] ,接下来走一步走到 i 位置:dp[i - 1] + csot[i - 1] ;
  • 先到达 i - 2 的位置,然后支付 cost[i - 2] ,接下来走两步走到 i 位置:dp[i - 2] + csot[i - 2] 。

3. 初始化:
从我们的递推公式可以看出,我们需要先初始化 i = 0 以及 i = 1 位置的值。容易得到
dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。


4. 填表顺序:
根据「状态转移方程」可得,遍历的顺序是「从左往右」


5. 返回值:
根据「状态表示以及题目要求」,需要返回 dp[n] 位置的值。

代码:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size()+1,0);
        for(int i = 2; i <= cost.size(); i++)
            dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]); 
        return dp.back();
    }
};

62.不同路径

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划中如何初始化很重要!| LeetCode:62.不同路径

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

解题思路:

1. 状态表示:
对于这种「路径类」的问题,我们的状态表示一般有两种形式:

  • 从 [i, j] 位置出发;
  • 从起始位置出发,到达 [i, j] 位置。

这里选择第二种定义状态表示的方式;

dp[i][j] 表示:走到 [i, j] 位置处,一共有多少种方式。


2. 状态转移方程:
如果 dp[i][j] 表示到达 [i, j] 位置的方法数,那么到达 [i, j] 位置之前的一小步,有两种情况:

  1. 从 [i, j] 位置的上方( [i - 1, j] 的位置)向下走一步,转移到 [i, j] 位置;
  2. 从 [i, j] 位置的左方( [i, j - 1] 的位置)向右走一步,转移到 [i, j] 位置。

由于我们要求的是有多少种方法,因此状态转移方程就呼之欲出了: dp[i][j] = dp[i - 1]
[j] + dp[i][j - 1] 。


3. 初始化:
可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点

  • 辅助结点里面的值要「保证后续填表是正确的」;
  • 「下标的映射关系」。

在本题中,「添加一行」,并且「添加一列」后,只需将 dp[0][1] 的位置初始化为 1 即可


4. 填表顺序:
根据「状态转移方程」的推导来看,填表的顺序就是「从上往下」填每一行,在填写每一行的时候「从左往右」


5. 返回值:
根据「状态表示」,我们要返回 dp[m][n] 的值。

代码:

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        dp[0][1] = 1;
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
        return dp[m][n];
    }
};

63. 不同路径 II

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,这次遇到障碍了| LeetCode:63. 不同路径 II

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有2条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

解题思路:

在上一题(62不同路径)的基础上,添加判断条件,即当该位置有障碍物时,就跳过此位置继续向后遍历

代码:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        dp[0][1] = 1;
        for(int i = 1; i <= m; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                if(obstacleGrid[i-1][j-1]) continue;
                else dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m][n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值