动态规划回文子串篇-代码随想录算法训练营第四十二天 |647. 回文子串,1745.回文串分割IV,132.回文串分割Ⅱ,5.最长回文子串,516.最长回文子序列,

647. 回文子串

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,字符串性质决定了DP数组的定义 | LeetCode:647.回文子串

题目描述:

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

示例 1:

输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

解题思路:

1. 状态表示:
为了能表示出来所有的子串,我们可以创建一个 n * n 的二维 dp 表,只用到「上三角部分」
即可。其中, dp[i][j] 表示: s 字符串 [i, j] 的子串,是否是回文串。


2. 状态转移方程:
对于回文串,我们一般分析一个「区间两头」的元素:
1)当 s[i] != s[j] 的时候:不可能是回文串, dp[i][j] = 0 ;
2)当 s[i] == s[j] 的时候:根据长度分三种情况讨论:

  • 长度为 1 ,也就是 i == j :此时一定是回文串, dp[i][j] = true ;
  • 长度为 2 ,也就是 i + 1 == j :此时也一定是回文串, dp[i][j] = true ;
  • 长度大于 2 ,此时要去看看 [i + 1, j - 1] 区间的子串是否回文: dp[i][j] = dp[i + 1][j - 1] 。

综上,状态转移方程分情况谈论即可。


3. 初始化:
因为我们的状态转移方程分析的很细致,因此无需初始化。


4. 填表顺序:
根据「状态转移方程」,我们需要「从下往上」填写每一行,每一行的顺序无所谓。


5. 返回值:
根据「状态表示和题目要求」,我们需要返回 dp 表中 true 的个数。

代码:

class Solution {
public:
    int countSubstrings(string s) {
        int n = s.size();
        vector<vector<int>> dp(n,vector<int>(n));
        int ret = 0;
        for(int i = n-1; i >= 0; i--)
        {
            for(int j = i; j < n; j++)
            {
                if(s[i] != s[j]) dp[i][j] = false;
                else
                {
                    if(i == j || i + 1 == j) dp[i][j] = true;
                    else dp[i][j] = dp[i+1][j-1];
                }
                if(dp[i][j]) ret++;
            }
        }
        return ret;
    }
};

1745.回文串分割IV

题目链接:. - 力扣(LeetCode)

题目描述:

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false 。当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串 。

示例 1:

输入:s = "abcbdd"
输出:true
解释:"abcbdd" = "a" + "bcb" + "dd",三个子字符串都是回文的。

解题思路:

我们可以把它拆成「两个小问题」:

  1. 动态规划求解字符串中的一段非空子串是否是回文串;
  2. 枚举三个子串除字符串端点外的起止点,查询这三段非空子串是否是回文串。

那么这道困难题就免秒变为简单题啦,变成了一道枚举题。

代码:

class Solution {
public:
    bool checkPartitioning(string s) {
        int n = s.size();
        vector<vector<int>> dp(n,vector<int>(n));
        for(int i = n-1; i >= 0; i--)
            for(int j = i; j < n; j++)
                if(s[i] == s[j])
                    dp[i][j] = (i == j || i + 1 == j) ? true : dp[i+1][j-1];

        for(int i = 1; i < n; i++)
        {
            for(int j = i+1; j < n; j++)
            {
                if(dp[0][i-1] && dp[i][j-1] && dp[j][n-1]) return true;
            }
        }
        return false;
    }
};

132.回文串分割Ⅱ

题目链接:. - 力扣(LeetCode)

题目描述:

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是

回文串。返回符合要求的 最少分割次数 。

示例 1:

输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

解题思路:

1. 状态表示:
dp[i] 表示: s 中 [0, i] 区间上的字符串,最少分割的次数。


2. 状态转移方程:
状态转移方程一般都是根据「最后一个位置」的信息来分析:设 0 <= j <= i ,那么我们可以
根据 j ~ i 位置上的子串是否是回文串分成下面两类:
1)当 [j ,i] 位置上的子串能够构成一个回文串,那么 dp[i] 就等于 [0, j - 1] 区间上最少回文串的个数 + 1,即dp[i] = dp[j - 1] + 1 ;
2)当 [j ,i] 位置上的子串不能构成一个回文串,此时 j 位置就不用考虑。由于我们要的是最小值,因此应该循环遍历一遍 j 的取值,拿到里面的最小值即可。
优化:我们在状态转移方程里面分析到,要能够快速判读字符串里面的子串是否回文。因此,我们可以先处理一个 dp 表,里面保存所有子串是否回文的信息。


3. 初始化:
为了防止求 min 操作时, 0 干扰结果。我们先把表里面的值初始化为「无穷大」。


4. 填表顺序:
毫无疑问是「从左往右」。


5. 返回值:
根据「状态表示」,应该返回 dp[n - 1] 。

代码:

class Solution {
public:
    int minCut(string s) {
        int n = s.size();
        vector<vector<int>> dp(n,vector<int>(n));
        vector<int> result(n,INT_MAX);
        result[0] = 0;

        for(int i = n - 1; i >= 0; i--)
            for(int j = i; j < n; j++)
                if(s[i] == s[j])
                    dp[i][j] = (i == j || i + 1 == j) ? true : dp[i+1][j-1];

        for(int i = 1; i < n; i++)
            if(dp[0][i]) result[i] = 0;
            else
            {
                for(int j = i; j >= 1; j--)
                    if(dp[j][i]) result[i] = min(result[i],result[j-1] + 1);
            }
        return result[n - 1]; 
    }
};

5.最长回文子串

题目链接:. - 力扣(LeetCode)

题目描述:

给你一个字符串 s,找到 s 中最长的 

回文子串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

解题思路:

a. 先用 dp 表统计出「所有子串是否回文」的信息
b. 然后根据 dp 表示 true 的位置,得到回文串的「起始位置」和「长度」。
那么就可以在表中找出最长回文串。

代码:

class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n,vector<bool>(n));
        int left = 0, cnt = 0;
        for(int i = n - 1; i >= 0; i--)
        {
            for(int j = i; j < n; j++)
            {
                if(s[i] == s[j]) 
                {
                    dp[i][j] = (i == j || i + 1 == j) ? true : dp[i+1][j-1];
                    if(dp[i][j] && j - i + 1 > cnt) left = i, cnt = j - i + 1;
                }
            }
        }
        return s.substr(left,cnt);
    }
};

516.最长回文子序列

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划再显神通,LeetCode:516.最长回文子序列

题目描述:

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

解题思路:

1. 状态表示:
dp[i][j] 表示:s 字符串 [i, j] 区间内的所有的子序列中,最长的回文子序列的长度。


2. 状态转移方程:
关于「回文子序列」和「回文子串」的分析方式,一般都是比较固定的,都是选择这段区域的「左右端点」的字符情况来分析。因为如果一个序列是回文串的话,「去掉首尾两个元素之后依旧是回文串」,「首尾加上两个相同的元素之后也依旧是回文串」。因为,根据「首尾元素」的不同,可以分为下面两种情况:
1)当首尾两个元素「相同」的时候,也就是 s[i] == s[j] :那么 [i, j] 区间上的最长回文子序列,应该是 [i + 1, j - 1] 区间内的那个最长回文子序列首尾填上s[i] 和 s[j] ,此时 dp[i][j] = dp[i + 1][j - 1] + 2;
2)当首尾两个元素不「相同」的时候,也就是 s[i] != s[j] :此时这两个元素就不能同
时添加在一个回文串的左右,那么我们就应该让 s[i] 单独加在一个序列的左边,或者
让 s[j] 单独放在一个序列的右边,看看这两种情况下的最大值:

  • 单独加入 s[i] 后的区间在 [i, j - 1] ,此时最长的回文序列的长度就是 dp[i][j - 1] ;
  • 单独加入 s[j] 后的区间在 [i + 1, j] ,此时最长的回文序列的长度就是 dp[i+ 1][j] ;

取两者的最大值,于是 dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]),综上所述,状态转移方程为:

  • 当 s[i] == s[j] 时: dp[i][j] = dp[i + 1][j - 1] + 2
  • 当 s[i] != s[j] 时: dp[i][j] = max(dp[i][j - 1], dp[i + 1][j])

3. 初始化:
我们的初始化一般就是为了处理在状态转移的过程中,遇到的一些边界情况,因为我们需要根据状态转移方程来分析哪些位置需要初始化。
根据状态转移方程 dp[i][j] = dp[i + 1][j - 1] + 2 ,我们状态表示的时候,选取的是一段区间,因此需要要求左端点的值要小于等于右端点的值,因此会有两种边界情况:

  1. 当 i == j 的时候, i + 1 就会大于 j - 1 ,此时区间内只有一个字符。这个比较好分析, dp[i][j] 表示一个字符的最长回文序列,一个字符能够自己组成回文串,因此此时 dp[i][j]=1 ;
  2. 当 i + 1 == j 的时候, i + 1 也会大于 j - 1 ,此时区间内有两个字符。这样也好分析,当这两个字符相同的时候, dp[i][j] = 2 ;不相同的时候, d[i][j] =0 。

对于第一种边界情况,我们在填表的时候,就可以同步处理。
对于第二种边界情况, dp[i + 1][j - 1] 的值为 0 ,不会影响最终的结果,因此可以不用
考虑。


4. 填表顺序:
根据「状态转移」,我们发现,在 dp 表所表示的矩阵中, dp[i + 1] 表示下一行的位置,
dp[j - 1] 表示前一列的位置。因此我们的填表顺序应该是「从下往上填写每一行」,「每一
行从左往右」。这个与我们一般的填写顺序不太一致。


5. 返回值:
根据「状态表示」,我们需要返回 [0, n -1] 区域上的最长回文序列的长度,因此需要返回
dp[0][n - 1] 。

代码:

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int>> dp(n,vector<int>(n));
        int ret = 0;
        for(int i = n - 1; i >= 0; i--)
        {
            for(int j = i; j < n; j++)
            {
                if(s[i] == s[j])
                {
                    if(i == j) dp[i][j] = 1;
                    else if(i + 1 == j) dp[i][j] = 2;
                    else dp[i][j] = dp[i+1][j-1] + 2;
                }
                else
                    dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
                ret = max(ret,dp[i][j]);
            }
        }
        return ret;
    }
};

  • 16
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值