P1 LangChain 的快速上手

0 观前须知

  • 大家好,这里是 Yukiii,一个对大模型落地应用开发感兴趣的研0学生,正在自主学习开发所需的各种技能(并且被八股折磨中),期待如果有志同道合(LangChain或八股或开发)的小伙伴请私信我,大家一起学习 😃
  • LangChain 是一个使开发者更容易地构建和部署基于 LLM 的应用程序,简化与语言模型的交互。接下来,我将持续记录自己学习 LangChain 的学习过程,本篇先介绍如何快速上手 LangChain,我的学习过程只注重如何使用,并不在意其底层实现。


1 环境配置

  • 在使用前需要 pip install 几个包,并且申请希望实用的模型的 API_KEY非常简单,要安装的包有:
pip install langchain
pip install -qU langchain-openai
pip install langchain_community
  • 演示一下如何申请模型的 API_KEY,以智谱为例,可以在 API keys 页面创建新的 API_KEY:

在这里插入图片描述

在申请完成之后,在自己的程序中添加如下环境设置:

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>
os.environ["OPENAI_API_BASE"] = "https://open.bigmodel.cn/api/paas/v4/"
  • (可选) LangSmith 是一个用于监控跟踪模型调用情况的工具,可以添加配置以测试自己模型的调用情况,同样需要申请 API_KEY,可以在设置中进入如下界面并且申请:

在这里插入图片描述

申请完成后,同样需要添加环境设置:

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = <YOUR_API_KEY>


2 工具的介绍及使用

首先,让我们先认识几个 LangChain 的工具:

  • model: 您选择使用的模型,模型具体的信息都可以在开发文档中查看,比如智谱AI的官方文档
  • StrOutputParser(): 通常模型的输入会带有一些提示信息,使用输出转换器可以只保留模型的回复。
  • PromptTemplate: 提示词模板,用于接受用户的输入,并返回输入给大模型的 prompt 信息。
  • chain: 按顺序连接 LangChain 模块,将从用户输入依次执行各个模块。

这样说还有些模糊,让我们用代码演示一下各个工具的功能,注意观察如何使用,及其各自的输出。

  • 首先观察一下 modelStrOutputParser() 的使用,这里我用的模型是 GLM-4-Air,您当然可以按照自己的喜好选择模型(开发文档中有对各模型的介绍),如果选择用其他公司的模型记得把 OPENAI-API-BASE 的配置改成相应的 url
import os

from langchain_core.messages import SystemMessage, HumanMessage
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

os.environ["LANGCHAIN_TRACING_V2"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值