超分重建
文章平均质量分 83
优优_v
这个作者很懒,什么都没留下…
展开
-
《小V读研笔记》#NDSRGAN 论文详解
判别器最终会生成一个 n*n 的判别矩阵(矩阵中的每一个值代表图像中的一个感受野),对矩阵中的每个值进行真假判别从而实现对图像的局部判别。在航空摄像领域,由于图像技术和摄像设备的影响,获得高分辨率的航空图像是很困难的。在无人机航拍领域,由于对航拍图像进行压缩和融合处理,用现用的超分重建模型对真实的低分辨率图像进行重建时容易产生一些伪影、纹理细节失真等问题,从而导致获得的低分辨率航拍图像纹理细节严重丢失。传统判别器的接受域是整幅图像,因此该网络对图像的局部信息不敏感,在丰富的高频细节中不能实现高精度的重建。原创 2023-05-07 10:34:46 · 178 阅读 · 0 评论 -
《小V读研笔记》#ESRGAN 论文详解
提出的 RRDB 具有残差中残差的结构,主干部分由三个残差密集块组成,残差密集块相当于将残差块与密集块相结合。因此,本文深入研究了 SRGAN 的三个关键组成部分——网络架构、对抗损失和感知损失,并对它们进行了改进,从而得到了一种增强型 SRGAN (ESRGAN)。生成器的对抗损失包含 xr 和 xf。由于 ESRGAN 的生成网络具有更深、更复杂的结构,因此本文通过残差缩放和较小的初始化来促进网络的训练。在将残差添加到主干部分之前,通过乘以 0 和 1 之间的常数来缩小残差,有利于增强网络的稳定性。原创 2023-04-05 17:45:39 · 581 阅读 · 0 评论 -
《小V读研笔记》#SRGAN论文详解
有监督的 SR 算法的优化目标通常是最小化恢复的 HR 图像和地面实况之间的均方误差 (MSE),最小化 MSE 也可以最大化峰值信噪比 (PSNR),这是用于评估和比较 SR 算法的常用度量方法。由于 MSE(和 PSNR)是基于像素级图像差异定义的,因此捕获感知相关差异(例如高纹理细节)的能力非常有限,即重建的图像缺乏高频细节。基于更快更深的 CNN 在单幅图像上的超分辨率重建的准确率和速度上都有很大的进展,但是以大的放大因子进行超分辨率重建时,无法恢复图像更精细的纹理细节。原创 2023-03-22 15:38:41 · 852 阅读 · 1 评论