1.算子介绍
rdd中封装了各种算子方便进行计算,主要分为两类
-
transformation
-
转化算子 对rdd数据进行转化计算得到
新的rdd
,定义了一个线程任务
-
-
action
-
执行算子
触发计算任务
,让计算任务进行执行,得到结果 -
触发线程执行的
-
rdd的转化算子大部分都是从rdd中读取元素数据(rdd中每条数据),具体计算需要开发人员编写函数传递到rdd算子中
rdd的执行算子则大部分是用来获取数据 collect方法就是触发算子。
2.常用算子的应用
2.1map
# 转化算子map的使用 from pyspark import SparkContext # 创建SparkContext对象 sc = SparkContext() # 生成rdd data = [1, 2, 3, 4] rdd = sc.parallelize(data) # 对rdd进行计算 # 转化算子map使用 # 将处理数据函数当成参数传递给map # 定义函数只需要一个接受参数 def func(x): """ 数据计算逻辑函数 :param x: 接收每一个rdd的元素数据 :return: """ return x + 1 def func2(x): """ 数据计算逻辑函数 :param x: 接收每一个rdd的元素数据 :return: """ return str(x) # 转化算子执行后会返回新的rdd rdd_map = rdd.map(func) rdd_map2 = rdd.map(func2) rdd_map3 = rdd_map2.map(lambda x: [x]) # 对rdd数据结果展示 # 使用rdd的触发算子,collect获取是所有的rdd元素数据 res = rdd_map.collect() print(res) res2 = rdd_map2.collect() print(res2) res3 = rdd_map3.collect() print(res3)
2.2flatMap
处理的是二维嵌套列表数据
from pyspark import SparkContext # 创建SparkContext对象 sc = SparkContext() # 生成rdd data = [[1, 2], [3, 4]] data2 = ['a,b,c','d,f,g'] # 将数据转为['a','b','c','d','f','g'] rdd = sc.parallelize(data) rdd2 = sc.parallelize(data2) # rdd计算 # flatMap算子使用 将rdd元素中的列表数依次遍历取出对应的值放入新的rdd [1,2,3,4] # 传递一个函数,函数接受一个参数 rdd_flatMap = rdd.flatMap(lambda x: x) rdd_map = rdd2.map(lambda x:x.split(',')) rdd_flatMap2 = rdd_map.flatMap(lambda x:x) # 输出展示数据 # 使用执行算子 res = rdd_flatMap.collect() print(res) res2 = rdd_map.collect() print(res2) res3 = rdd_flatMap2.collect() print(res3)
2.3fliter
条件过滤的书写和Python中if判断一样
rdd7 = sc.parallelize([1, 2, 3, 4]) rdd8 = sc.parallelize(['a', 'b', 'c', 'a']) # filter算子,可以接受rdd中每个元素数据,然后传递给函数进行过滤 # lambda需要有一个接收值x,x接收到每个元素数据后,如何进行过滤需要写判断逻辑 # 判断条件的书写逻辑和if的判断逻辑一样 filter_rdd = rdd7.filter(lambda x: x > 2) filter_rdd2 = rdd8.filter(lambda x: x == 'a')
2.4distinc
去重
distinct_rdd = rdd.distinct()
2.5groupBy
分组
# 5、对数据进行分组 # groupBy是分组算子,会读取rdd中每个元素数据,传递给函数使用 # lambda需要一个接收值x,接收groupBy传递的元素数据,然后指定分组规则 # hash(x) % 2 对x中的元素数据进行hash取余,将数据分成两组,余数相同的数据会放在一起 # groupBy返回一个新的rdd,rdd的结构形式是 [(key,value),(k,v)] groupBy_rdd = rdd8.groupBy(lambda x: hash(x) % 2) # 6、对kv形式的数据进行取值处理 # mapValues,可以获取kv中的value值部分传递给函数进行使用 # mapValues返回一个新的rdd数据 mapValues_rdd = groupBy_rdd.mapValues(lambda x: list(x))
2.6sortBy() 排序
rdd.sortBy(lambda x:x,ascending=False) 倒序
rdd.sortBy(lambda x:x)正序
3.常用action算子
-
collect() 取出rdd中所有值
-
rdd.collect()
-
-
reduce() 非k-v类型数据累加 [1,2,3,4,6]
-
rdd.reduce(lambda 参数1,参数2:两个参数计算)
-
-
count() 统计rdd元素个数
-
rdd.count()
-
-
take() 取出指定数量值
-
rdd.take(数量)
-
# 执行算子的使用
from pyspark import SparkContext
sc = SparkContext()
# python转为rdd
rdd = sc.parallelize([1, 2, 3, 4, 5, 6])
# 触发计算
# action算子计算完成返回的是计算结果,不在是rdd了,不能在进行rdd操作了
# collect方法,触发计算获取是所有计算结果
res = rdd.collect()
print(res)
# reduce方法,传递一个计算逻辑,对元素数据进行累加计算
# 可以不需要转化算直接累加计算,但是不能处理kv形式数据
res = rdd.reduce(lambda x,y:x+y)
# x初始为0 y一次获取元素数据 x=0,y=1 x= x+y=1
# x=1,y=2 x+y=3
# x=3,y=3 x+y=6
print(res)
# count 获取rdd元素个数
res = rdd.count()
print(res)
# take取指定数量的元素数据
res=rdd.take(3)
print(res)
3.1关联与合并
-
union 合并两个rdd 不去重
-
join k-v类型数据 通过key进行关联
# 多个rdd操作
from pyspark import SparkContext
sc = SparkContext()
rdd1 = sc.parallelize([1,2,3,4])
rdd2 = sc.parallelize([5,6,7,4])
rdd_kv1 = sc.parallelize([('a',1),('b',2),('c',3)])
rdd_kv2 = sc.parallelize([('c',4),('d',5),('e',6)])
# rdd之间的合并
union_rdd = rdd1.union(rdd2)
union_kv_rdd = rdd_kv1.union(rdd_kv2)
# kv形式rdd进行join关联 通过key关联
# 内关联 相同key的数据会保留下来
join_rdd = rdd_kv1.join(rdd_kv2)
# 左关联 左边rdd的数据会被保留下来,如果右边rdd有对应的key值数据会显示,没有对应key值会显示为空
leftOuterJoin_rdd = rdd_kv1.leftOuterJoin(rdd_kv2)
# 右关联 右边rdd的数据会被保留下来,如果左边rdd有对应的key值数据会显示,没有对应key值会显示为空
rightOuterJoin_rdd = rdd_kv1.rightOuterJoin(rdd_kv2)
# 查看结果
res = union_rdd.collect()
print(f'union合并结果:{res}')
res2 = union_kv_rdd.collect()
print(f'kv_union合并结果:{res2}')
res3 = join_rdd.collect()
print(f'join内关联结果:{res3}')
res4 = leftOuterJoin_rdd.collect()
print(f'左关联结果:{res4}')
res5 = rightOuterJoin_rdd.collect()
print(f'右关联结果:{res5}')