- 博客(11)
- 收藏
- 关注
原创 组件介绍与自定义开发
组件的主要优点是提高了开发效率,因为它们可以在不同的项目中重复使用。此外,组件还可以提高代码的可维护性和可扩展性,因为它们具有独立的功能和责任。同时,他们还需要考虑组件的可重用性、扩展性和易用性,以确保其能够在不同的环境和项目中使用。总之,组件的介绍和自定义开发为开发人员提供了一种高效、灵活和可重用的方式来构建应用程序。通过自定义开发,开发人员可以根据特定需求创建自己的组件,并将其集成到应用程序中,以实现更好的功能和性能。这意味着开发人员可以根据自己的要求、设计和架构来构建组件,以满足应用程序的特定需求。
2024-06-30 10:16:40 464
原创 PPML入门/基于SPU机器学习建模实践
要在密态环境下计算这个模型,就需要对run-on-cpu函数修改,将input-ids和model_params分别用P1和P2进行加密,然后利用Spu.device计算密态的GPT2,然后将密文计算结果利用ppd_get获得明文的计算结果。它通过在保护用户数据的同时进行模型训练,实现了数据隐私和模型质量的双重保护。4)以逻辑回归为例,P1和P2拿到数据,计算权重和标签,利用SPU安全发送到MPC device, MPC-device有两个服务器,与P1和P2一起调用JAX做训练和推理。
2024-06-30 10:15:18 379
原创 SML入门/基于SPU迁移机器学习算法实践
训练完成后,你可以使用SML的库函数来评估模型的性能,比如计算准确率、精确率和召回率等。总结来说,基于SPU迁移机器学习算法的实践学习过程包括学习SML基本语法、导入机器学习库、数据预处理、特征选择、模型训练和评估、模型优化等步骤。模型优化:如果模型性能不理想,你可以使用SML的库函数来进行模型优化,比如使用交叉验证、调整超参数等。你还可以使用SML的库函数来进行特征选择和模型集成等操作,以提高模型的性能。特征选择:在训练模型之前,你可能还需要对数据进行特征选择操作,以减少特征的数量并提高模型的性能。
2024-06-30 10:13:48 410
原创 密态引擎SPU框架介绍
它提供了一种硬件和软件协同工作的环境,用于保护和执行敏感的计算任务和数据。它可以用于加密算法、数据隐私保护、数字签名等场景,可以帮助企业和个人提高数据安全性和隐私保护能力。13)SPU编程可以选择jax.numpy, 将函数compare列入SPU,使用JIP编译执行,定义输入和输出设备,可以与SPU无缝衔接。10)多种协议包括Semi2K 、ABY3、Cheetah,协议可包括半诚实和恶意,安全协议可扩展。2)隐私计算的技术路线包括同态加密,多方安全计算、、差分隐私、可信硬件。
2024-06-30 10:12:33 517
原创 XGB算法与SGB算法开发实践
XGB算法与SGB算法开发实践主要讲述了在隐私计算框架下,两种纵向树模型算法SS-XGB(SecretShared-eXtremeGradientBoost)和SGB(SecureGradientBoost)的应用、原理、实现方式以及它们之间的区别和优势。综上所述,XGB算法与SGB算法开发实践主要聚焦于如何在保护数据隐私的前提下,利用纵向树模型算法进行多方合作的数据挖掘和机器学习,同时介绍了两种算法的原理、实现方式、优缺点以及适用场景。
2024-06-30 10:11:29 498
原创 逻辑回归LR与广义线性模型GLM开发实践
广义线性模型是一种更一般化的回归模型,可以用于处理不同类型的响应变量,如二分类、多分类和连续型变量。总的来说,逻辑回归和广义线性模型是两种常用的机器学习方法,可以用于解决不同类型的分类和回归问题。在开发实践中,需要进行数据预处理、模型训练和评估等步骤,以找到最优的模型配置。通常情况下,逻辑回归的输出是一个介于0和1之间的概率值,可以通过设置一个概率阈值来进行分类。模型训练:使用逻辑回归和广义线性模型的算法进行模型的训练。模型应用:根据训练好的模型,对新的样本进行预测或分类。
2024-06-30 10:09:25 343
原创 基于隐私保护的机器学习算法介绍
在隐私保护的机器学习实践中,我们可以结合差分隐私、同态加密等技术对神经网络算法进行改进和优化,以实现在保护数据隐私的同时提高模型的性能和准确性。因此,如何在保证机器学习算法性能的同时,实现数据的隐私保护,成为了一个亟待解决的问题。隐私求交则是一种在保护隐私的前提下寻找两个数据集交集的技术,它可以在不暴露原始数据的情况下实现数据的共享和比对。通过综合运用差分隐私、同态加密、密码学算法和联邦学习等技术手段,我们可以在保证机器学习算法性能的同时实现数据的隐私保护,为数据的安全共享和有效利用提供有力支持。
2024-06-30 10:08:09 365
原创 SecretFlow与Secretnote安装部署
安装secretnote之前,我安装了ubuntu22.04,anaconda, docker desktop, secretflow,进入ubuntu, 利用conda建立虚拟环境,启动docker desktop, 激活secretflow的sf虚拟环境,利用docker compose up,并在浏览器上建立alice和bob两个容器。下载代码:接下来,您需要下载SecretFlow和Secretnote的代码。您可以从Node.js官方网站上下载适用于您的操作系统的安装程序,并按照提示进行安装。
2024-06-30 10:06:58 326
原创 关于隐语架构概览的知识
隐蔽的符号指的是使用一些特定的符号或者象征物来代表某种特定的意义,常常需要一定的解码才能理解。隐语架构是指一种特殊的语言结构,它通过使用隐喻、暗示和隐蔽的符号来传达特定的信息或意义。隐语架构常常用于文学作品、艺术作品、政治宣传等领域,可以帮助作者或者发言人传达复杂的观点、抒发情感或者传递隐秘的信息。总的来说,隐语架构是一种充满隐喻、暗示和隐蔽符号的语言结构,通过这些手法传达一些特定的信息或者意义。它常常用于艺术、文学、政治等领域,可以帮助作者或发言人传达复杂的观点和情感,或者传递隐秘的信息。
2024-06-30 10:05:46 356
原创 隐私计算开源助力数据要素流通
目前已经有一些开源的隐私计算框架和工具,例如Facebook的Lift、IBM的FHE-Toolkit、Google的TensorFlow等,它们为数据要素流通提供了一种方便、可靠的解决方案。开源社区的参与和贡献将为隐私计算的创新和发展提供支持和动力,推动数据要素流通的进一步发展。近年来,随着数据的快速增长和云计算技术的发展,数据安全和隐私保护问题成为了数据要素流通的一个重要挑战。隐私计算开源助力数据要素流通主要指的是通过开源的隐私计算技术,推动数据在不泄露原始数据的前提下实现安全、可信的流通和共享。
2024-06-30 10:04:19 429
原创 数据可信流通
数据可信流通的实现需要采取一系列的安全措施,包括数据加密、身份验证、访问控制、数据备份和恢复等,以确保数据在传输和存储过程中的安全。数据可信流通是指数据在传递和交换过程中的可信度,即数据的真实性、完整性、保密性和可靠性等特性。数据可信流通是建立在数据安全基础上的,它关注的主要问题包括数据的来源、传输过程中的安全性、存储和处理中的安全性等。2. 数据全流程合规与监管:完善数据的合规与监管规则体系,确保数据来源合法、隐私保护到位、流通和交易规范。11. 数据密态流转:数据以密态形式流通,保障其全链路安全可控。
2024-06-30 10:02:50 448
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人